lelt*∎*lit

HARDFACING CONSUMABLES

CONTENT

Melt*lit

GENERAL

The company5	,
Hardfacing overview	

SOLID WIRES

Workhardening	8
Impact resistant	8
Tool steels	9
Nickel base	
Copper alloys	11
Cobalt base	

FLUX CORED WIRES

Workhardening	14
Impact resistant	15
Abrasion resistant	
Tungsten carbides	
Nickel base	
Cast iron	21
Copper alloys	21
Tool steels	
Cobalt base	23

COATED ELECTRODES

Workhardening	. 24
Impact resistant	. 25
Abrasion resistant	26
Tungsten carbides	26
Cobalt base	27
Nickel base	28
Copper alloys	. 29
Special applications	. 29

OXY-ACETYLENE

Tungsten carbides - Iron base	. 30
Tungsten carbides - Nickel base	. 30

WEAR PLATES

SPECIAL APPLICATIONS

Weartubes, Ferobide,	Weld on tiles	. 32
----------------------	---------------	------

PRODUCT GUIDES

Elements guide in hardfacing	.33
Cast Iron welding	.34
Alloy types according to DIN EN 14700:2005	.36
Uddeholm Tool steel selection guide	. 38
Shielding gas Classification & Selection guide	. 39
Hardness conversion table	.40
Conversion table inch to mm	.41
Density	.41
Mesh-Micron conversion table	.41
Applications per Industry	.42

* Information about our thermal spray powders, arc spray wires, PTA powders, laser powders and laser tig wires you will find on our website: www.meltolit.se

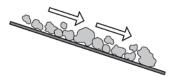
THE COMPANY

Melt*lit

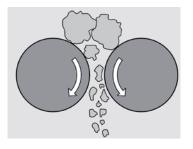
Meltolit was founded in 1963. From the beginning there were only precious metals in the product range but this gradually included silver brazing alloys and copper brass. Eventually welding was included and we now offer a complete range of consumables for welding, brazing and hardfacing.

Our own Meltolit brand includes high quality products for production, repair and maintenance. The company strength has always been quality, know how and flexibility.

We are situated in Gothenburg, Sweden with both main warehouse and head office from where we serve customers around the globe but with focus on Scandinavia.


HARDFACING OVERVIEW

VARIOUS TYPES OF WEAR


Hardfacing is used wherever there is wear. It protects parts and applications that are exposed to various types of wear. It will not only restore old worn down material but can be used in a preventive way in new production. This can save large costs in production with a lower cost base material and instead hardface the areas exposed to wear. Its important to know that high hardness alone is not something that gives you better wear protection. This is achieved by using the correct hardfacing material for the right application. This catalogue will give you the help you need to choose the correct filler metal for your application.

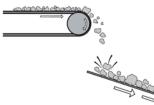
Abrasion from mineral wear

The result of particles sliding against a surface. Gravel industry, energy plants, mining, agricultural applications etc.

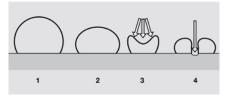
High Abrasion combined with pressure Mineral crushers, mining, scrapers, mixer paddles etc.

Thermal fatigue cracking

Occurs when a part are repeatedly heated and cooled and thermal expansion reoccurs. Hot forging tools, hot rollers


Erosion

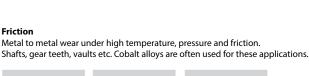
Similar to arbasion but occurs when particles or liquid strike the surface in high speed. Dregdging pumps, sludging etc.

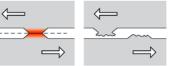

Impact combined with abrasion

The result of particles hitting a surface or a part hitting other hard objects. Crushers, excavators, quarries etc

Cavitation

When changes of pressure in liquids lead to base metal fatigue and eventually results in lack of material(cavities). Typical for turbine blades, water turbine components etc.




Corrosion

Friction

When talking about corrosion the term "cladding" with stainless or nickel base alloys are most common. For hardfacing corrosion is mostly combined with other type of wear. Ex Paper and pulp industry where a combination of abrasion and corrosion occurs. Transport screws, mixer blades etc.

elt*lit

TERMINOLOGY

Here we explain a number of important terms to better understand hardfacing.

Rebuilding

When restoring old worn down and damaged material you normally use a filler metal of the same alloy of the base metal. This however depends on the base metal and its compatibility with the filler metal. You need to take in account the service temperature of the part where there can be differences in thermal expansion between the base and the filler metal. Also the risk of cold cracking can be an issue. This however depends on the base material type and if it needs certain preheating and interpass temperatures.

Buffer layer

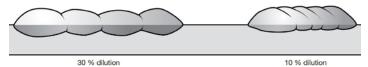
This is used as a layer between the base material and the hardfacing material for below reasons.

- To create a good bond to the base material
- When welding on old hardfaced surfaces or difficult to weld base materials
- To avoid shrincage cracks from the hardfacing material down to the base metal
- To increase resistance to impact
- To limit dilution
- When you have limitations with preheating.

We recommend Austenitic stainless steel buffer layers of 307 type and with high Mn like FD 250K or HMn E.

Hardfacing is used where parts are exposed to one or many medias.

Abrasive wear, corrosive media, cavitation, impacts, erosion, heat, shocks, pressure or a mix of them all.


The deposit becomes harder than the base material and resistant against the wears its exposed to.

The hardfacing deposit can be of one layer or multiple layers to achieve the right hardness and wear resistance.

Dilution

When hardfacing the goal is to have as little dilution as possible in order to get the deposit as resistant as possible. The more dilution you get the less wear resistant the hardfacing deposit will become due to change of its chemistry. Normally you need to weld 2-3 layers before requested hardness and wear resistance is achieved but this is off course depending on the application. To avoid unnecassary dilution there are a few factors to take in consideration.

- Heat input, the less heat you use the less diltuion. That is why you always wants to weld as cold as possible
- Welding technique, multipass welds give less dilution that single pass beads. Use an overlap of 50% between weld passes to get a good controlled dilution
- Welding speed, higher speed decreases the dilution
- Stick out, normally you use a longer stick out to decrease the dilution
- Polarity, when welding some types of MMA electrodes you can use AC or DC- to get less dilution. Also with some FCW types you can use DC-.

Shrincage cracks

When welding abrasive resistant chromium carbide wires with a lot of hard phases you will get cracks across the weld bead when cooling down. This is perfectly normal but if the part is then exposed to continuous impact loads and shock it can make the cracks continue down to the base material. This can often be avoided with a buffer layer in these cases. Other wires may not be allowed to crack due to the need to guarantee a good anti corrosion resistance. Then the cracking can be avoided by a good combination of preheating and recooling.

Pre heating

Preheating is depending on what base material to be welded. Normally hardfacing applications involve unalloyed steel, low alloyed steel, high alloyed steel and austenitic manganese steels(Hadfield steels). When welding Manganese steels you should not use preheating at all as it can get brittle over 150°C. Preheating reduces the risk of hydrogen cracking, tensions and gives the heat affected zone a softer structure.

To determine the correct preheating temperature you need to know the carbon equivalent and the composition in the base material.

Carbon equivvalent (Ceq)	Weldability	Preheating	Postheating
Ceq< 0.35	Good	<100°C	Not required
Ceq 0.35-0.6	Ok	150-250°C	Advantage
Ceq >0.6	Special precautions	> 250°C	Required

WORK HARDENING SOLID WIRES

PRODUCT	CLASSIFICATION				CHI	EMICAL	COMPOS	ITION (%)				
				MN	CR		МО	AL			NB		HARDNESS
307	ISO 14343-A: 18 8 Mn AWS A 5.9: ER 307Si	0,09	0,9	7	18,5	9	-	-	-	-	-	-	As welded: 200 HB After W-H: 450 HB
	For difficult welded steels and stainless steels against regular steels. Joining and hardsurfacing parts, buffer layers before hardfacing to avoid cracks and welding tool steels, manganese steels etc.												
312	ISO 14343-A: 29 9 AWS A 5.9: ER312		0,02	1	0,6	29	0,5	-	-	-	-	-	As welded: 240 HB After W-H: 450 HB
rials. Preheat similar comp steels. Weldin	Iloy with high alloy content and high ferrite ratio which allow it to benefit from extreme tolerance to hot cracking and to dilution with a wide range of base mate- als. Preheat can often be avoided or minimized. The weld deposit workhardens and gives good wear and friction resistance. Examples: Welding stainless steels of milar composition or ferritic stainless steels. Joining stainless steels to mild and low-alloyed steels. Buffer layers before hardsurfacing. Maintenance on hard-to-weld teels. Welding high carbon hardenable steels, of known or unknown composition and generally most of steels subject to cracking such as tool steels, manganese teels, spring steels and high-speed steels.												

IMPACT RESISTANT SOLID WIRES

PRODUCT														
				MN	CR		MO	AL			NB		HARDNESS	
250	W.N 1.7384 DIN 8555: MSG/WSG 1-GZ-250	0,09	0,55	1	2,6	<0,3	1	-	0,03	-	Rest	<0,1	22-27 HRC 238-266 HB	
Cr-Mo alloyed steels (1,5% - 0,5%) resistant to high temperature, wear, pressure and shocks. Good resistance to cracking and to the attack of sulphured agents. Guide rollers, excavators, screw conveyers, gears, moulds, rolling surfaces, etc.														
350	W.N 1.7363 DIN 8555: MSG/WSG 5-GZ-350	0,08	0,5	0,7	6,0	<0,3	0,7	0,02	0,03	-	Rest	-	36-40 HRC 337-372 HB	
	ed steels (2,5% - 10%) resistant to hi s, moulds, excavators, rolling surface							e to crac	king and	to the at	tack of s	ulphured	agents. Guide	
600	W.N 1.4718 DIN 8555: MSG/WSG 6-GZ-60 En 14700: S Fe8	0,45	3	0,4	9,3	0,15	0,15	0,03	0,03	0,1	0,05	0,05	55-60 HRC 550-620 HB	

TOOL STEELS SOLID WIRES

RC1	W.N 1.2367 DIN 8555: MSG/WSG 3-GZ-40P	0,12	0,5	0,7	6,2	<0,2	3,2	-	-	-	-	-	38-42 HRC 370-410 HB
	-Mo and/or Ni-Cr-Mo alloyed steels rollers, switches, corners, etc.	for appli	cation to	hot woi	king par	ts, subje	cted to a	brasion,	compres	sion and	hot stro	kes. Hot	shears, moulds,
RC2	W.N ~ 1.2367 DIN 8555: MSG/WSG 3-GZ-50ST	0,26	0,5	0,7	5,2	<0,2	3,8	-	-	-	-	0,7	45-50 HRC 430-485 HB
emperatures	o and Ni-Cr-Mo alloyed materials wh are required. Repairing and restorat of medium hardness.						-				-		-
RC3	W.N 1.2343 DIN 8555: MSG/WSG 3-GZ-55ST	0,37	0,4	1,1	7	<0,2	2,2	-	-	-	-	0,3	52-57 HRC 540-590 HB
-	s subject to strong abrasion and cor 1 rollers. The material can be subject								eratures	. Used in	forges, i	ollers, cy	linders, cogwheels,
RC9	W.N 1.3343 DIN 8555: MSG/WSG 4-GZ-60-S AISI ~ M2	0,9	0,25	0,3	4,2	0,2	5	-	1,8	6,3	-	-	60-64 HRC 620-660 HB
	olybdenum alloyed welding wire su r a wide variety of uses. Twist drills, ars etc.				•								
M7	W.N 1.3348 AISI M7	1,0	0,4	0,3	3,8	-	8,6	-	1,9	1,8	-	-	57-64 HRC
-	relding of Mo-alloyed high-speed st grinding. To be used for cutting toc												
P20	W.N 1.2330 AISI P20	0,35	0,5	0,8	1,7	-	0,45	-	-	-	-	-	34-38 HRC
	l langanese - Molybdenum welding v nponet for general mechanical engi	-		edium-s	ized mou	llds for p	lastic pro	cessing,	, mould f	rames fo	or injectio	n moule	l ding and die casting
4130	W.N 1.2367 AISI 4130	0,3	0,3	0,5	1	<0,2	0,2	-	-	-	-	-	36-40 HRC
5 5	low alloy Cr-Mo welding wire used l sector, construction of connecting									od toug	hness ar	id high s	tress resistance. Use
A2	W.N 1.2363 AISI A2	1,0	0,3	0,55	5,2	-	1,1	-	0,25	-	-	-	55-59 HRC
	e welding of cold work tool steel wi s, measuring instruments, etc.	th high r	esistance	e to wea	r and goo	od machi	ning pro	perties.	Cutting 1	ools, bla	nking ar	id punch	ing tools, shear
H13	W.N 1.2344 AISI H13	0,4	1	0,4	5,2	-	1,4	-	1	-	-	-	54-60 HRC
	for hot work tool steels with excelle s, cylinder crushers, screws, hammer					wear re	sistance.	Heat che	ecking re	esistance	. Used in	particul	ar to repair mandrels
2343	W.N 1.2343 En 14700 S Fe3	0,38	1,0	0,4	5,0	0,15	1,1	-	0,45	-	-	-	52-57 HRC
For deposit we moulds, botto	elding of hot work steel. Maintenand m dies, etc.	ce and ne	ew manu	facturin	g of hot i	forming	ools for	operatin	g tempe	rature u	p to 550°	C. For h	ot shears, die casting
2567	W.N 1.2567 En 14700 S Fe3	0,3	0,25	0,4	2,5	0,15	-	-	0,6	4,5	-	-	41-46 HRC
For repairs of	hot forming tools as well as for rein	forceme	nt of woi	rk surfac	es. To be	used for	anneal c	uts, forg	ing dies,	etc.			
8405	W.N 1.8405 En 14700 S Fe2	0,7	0,45	1,9	1	0,15	-	0,1	-	-	-	0,2	36 HRC
	ard wear resistant deposit on wear	parts un	der press	ure, imp	act abras	sive stres	s. Finishi	ng by gr	inding is	possible	e. Applica	ation wit	h dies, bottom dies,
15CDV6 (SCVS)	crawler running gear parts, etc. EN 4334 15CrMnMoV5-4-9-3 AIR 9117 15CDV6	0,14	0,15	1,0	1,4	-	0,9	-	0,25	-	-	-	42 HRC
A low carbon a	alloy with high yield strenght superion occurs and also for ha				ughness	and used	l in both	aerospa	ce and ir	n motors	ı ports for	roll cage	es, pressure vessels,


elt*****lit

NICKEL BASE ALLOYS SOLID WIRES

PRODUCT	CLASSIFICATION					CHEMI	CAL CON	IPOSITIC	DN (%)						
	1	С	SI	MN	CR	NI	MO	AL	CO	W	NB	TI	CU	FE	HARDNESS
55	AWS A5.14: E NiFe-Cl DIN 8573: SG NiFe-1	0,03	0,2	0,5	-	55	-	-	-	-	-	-	-	Rest	-
1	kel alloyed filler metal for weldir istics. Foundry defects, repair or	-							s cast iro	n. Good	flow of t	he weld i	metal an	d excelle	nt welding
61	ISO 18274: NiTi3 - S Ni 2061 AWS A5.14: ER Ni-1	0,02	0,5	0,4	-	Rest	-	-	-	-	-	3,3	-	-	-
and can b	osit consists of pure nickel. Reco be used as buffer strings before u has good corrosion resistance, j	using a fe	erro-nick	el wire. F	-					-		-			
60	ISO 18274: S-NiCu30Mn3Ti AWS A5.14: NiCu-7	0,03	0,4	3,5	-	Rest	-	-	-	-	-	2,2	29	-	-
1	d copper alloyed wire for weldir Iso for above grades against ca	-	-	copper	-nickel al	loys and	copper-	nickel pl	ated stee	els such a	is Monel	400, Cul	Ni 90/10,	CuNi 70,	/30 and
82	ISO 18274: S-Ni 6082 (NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3	0,03	0,2	3,2	20,5	Rest	-	-	-	-	-	0,3	2,3	2	-
-	red wire for welding of high nick cast iron. Used in cryogenics, re									milar joir	ning of lo	ow alloye	d steel, s	tainless	steel, nickel
625	ISO 18274: S-Ni 6625 (NiCr22Mo9Nb) AWS A 5.14: ER NiCrMo-3	0,01	0,15	0,1	22	Rest	8,7	-	-	-	3,6	-	-	0,3	-
For weldi	nigh temperature strength and s ng of alloy 625, alloy 825, alloy 2 9% Ni steels, and for welding var	25-6MO, a	and a wi	de range	of high			-					-		
C-276	ISO 18274: S-Ni 6276 (NiMo16Cr15Fe6W4) AWS A5.14: ER NiCrMo-4	0,02	0,05	0,4	16	Rest	16	-	-	3,5	-	-	-	6,0	-
	oyed wire for welding of high niccal industry and piping.	ckel cont	tent alloy	/s such a	s Hastell	oy C-276	, NiMo16	Cr15W.	Excellent	resistan	ce to chl	orides, a	cids and	corrosio	n. Equipment
622	ISO 18274: S-Ni 6022 AWS A 5.14: ER NiCrMo-10	0,01	0,0	0,2	22	Rest	14	-	2,5	3	-	-	-	4,6	-
in a broad	byed welding wire for welding s der spectra. Its very much suited ives a very good resistance to co	l for dissi	milar we	lds of sta									-		
59	ISO 18274: S-Ni 6059 AWS A 5.14: ER NiCrMo-13	0,01	0,1	0,5	23	Rest	16	0,4	-	-	-	0,5	-	1,5	-
	oyed welding wire for welding o ex and super-duplex steels. Ofte											•			ning of auste-
686	ISO 18274: S-Ni 6686 AWS A 5.14: ER NiCrMo-14	0,01	0,01	0,2	20,6	Rest	16,2	0,2	-	3,9	-	0,1	-	1,0	-
625. lt is a	austenitic Ni-Cr-Mo-W alloy offe also used for dissimilar welds in sure exceptional resistance to pi	superau	stenitic a	ind supe	rduplex	stainless									

COPPER ALLOYS SOLID WIRES

	CLASSIFICATION			C	HEMICAL CO	OMPOSITION	۸ (%)			
		CU	AL	SN	MN			FE		HARDNESS
CuSn6	ISO 24373 CuSn6P Cu5180	Rest	-	6	-	-	0,2	-	-	80 HB
Used for build	l-up and join welding on CuSn allo	ys, CuSnZnP	b cast alloys	and cast iro	n.	I	1	I		1
CuSn12	ISO 24373 CuSn12P Cu5410	Rest	-	12	-	-	0,2	-	-	120 HB
	l welding processes. The weld met ding and repairs on bronzes.	al achieves l	high hardnes	ss correspon	ding to a ca	st bronze, so	it's used for	particularly	wear-resista	nt coatings as we
CuAl8	ISO 24373 CuAl7 Cu6100	Rest	8	-	0,1-0,3	0,1-0,5	-	-	-	100 HB
Suitable for we workpieces.	elding and hardfacing aluminium	bronzes, ste	el and galva	nized steel.	Very good co	orrosion and	l wear resista	ance. Prehea	ting is recon	nmended for larg
CuAl8Ni2	ISO 24373 CuAl8Ni2Fe2Mn2 Cu6327	Rest	7,5-9,5	-	0,5-2,5	0,5-3	-	0,5-2,5	-	140 HB
-	welding between steel and CuAl al h solenoid valves.	loys. High w	ear and abra	asion resistar	nce. Very goo	od corrosion	resistance a	gainst seaw	ater. High pr	essure resistance,
CuAl8Ni6	ISO 24373 CuAl9Ni5Fe3Mn2	Rest	8,5-9,5	-	1-2	4-5	-	3-3,5		>200 HB
	Cu6328							5 5,5		200110
pumps, pipe s	Cu6328 ing cast and forge parts made of n systems, as well as for apparatus er awater and corrosion and is also re	ngineering a	num-bronze nd food con	tainers. Build	ng (ship pro lup welding	on steel and	d AlBz, inclue	ower stations	aterial alloy	alves, sieves,
pumps, pipe s	ing cast and forge parts made of n systems, as well as for apparatus er	ngineering a	num-bronze nd food con	tainers. Build	ng (ship pro lup welding	on steel and	d AlBz, inclue	ower stations	aterial alloy	alves, sieves,
pumps, pipe s resistant to sea CuAI10 CuAI10 is a sta	ing cast and forge parts made of n systems, as well as for apparatus er awater and corrosion and is also re ISO 24373 CuAl10Fe	ngineering a esistant to w Rest ng to the AW	num-bronze nd food con ear (for exan 8,5-11 'S, which is p	tainers. Build nple, simulta - - particularly si	ng (ship pro lup welding neous expo - uitable for C	pellers, etc.) on steel and sure to seaw	AIBz, inclue vater, cavitat	ower stations ding multi-m ion, and eros <1,5	aterial alloy: sion).	alves, sieves, s. The weld metal 140 HB
pumps, pipe s resistant to sea CuAl10 CuAl10 is a sta	ing cast and forge parts made of n systems, as well as for apparatus er awater and corrosion and is also re ISO 24373 CuAl10Fe Cu6180 andard CuAl welding filler accordir	ngineering a esistant to w Rest ng to the AW	num-bronze nd food con ear (for exan 8,5-11 'S, which is p	tainers. Build nple, simulta - - particularly si	ng (ship pro lup welding neous expo - uitable for C	pellers, etc.) on steel and sure to seaw	AIBz, inclue vater, cavitat	ower stations ding multi-m ion, and eros <1,5	aterial alloy: sion).	alves, sieves, s. The weld metal 140 HB
pumps, pipe s resistant to sec CuAl10 CuAl10 is a sta build-up weld MX 300 (CuMn13Al) MX 300 is a hig	ing cast and forge parts made of n systems, as well as for apparatus er awater and corrosion and is also re ISO 24373 CuAl10Fe Cu6180 andard CuAl welding filler accordir ling on ferritic-perlitic steels and ca ISO 24373 CuMn13Al8Fe3Ni2	ngineering a esistant to w Rest ng to the AW ast iron. Ligh Rest Irk-proof. Re	num-bronze nd food con rear (for exan 8,5-11 /S, which is p tt and good- 8 sistant to sea	tainers. Build nple, simulta - warticularly si flowing weld - awater, wear	ng (ship pro lup welding neous expo - uitable for C 1 pool. 11-14 , and abrasic	uAl material	s. High wear	ower stations ding multi-m ion, and eros <1,5 and abrasio 2-4	aterial alloy: sion). n resistance.	alves, sieves, s. The weld metal 140 HB .Well suited for 290 HB

COBALT BASE SOLID WIRES

ar pads.	FE HARDNESS <5,0 20°C 55 HRC 600°C 44 HRC 800°C 34 HRC	CO rest
ice to corrosion, ar pads.	600°C 44 HRC 800°C 34 HRC	rest
ar pads.		
	ure shocks. Retains hardness a	empearture
0,8 28	<5,0 20°C 40-43 HRC 300°C 35 HRC 600°C 29 HRC	rest
ice. Retains harc	ical valves, shear blades, pump	d chemical
1 27,5	<5,0 20°C 45-47 HRC 300°C 37 HRC 600°C 32 HRC	rest
tures. Retains ha	or large band saw blades, chai	dustry for la
0,6 27,5	<5,0 30 HRC work hardening 45 HRC	rest
le. Steam valves	jing dies etc.	ves, forging
<1,5 20	- 24-27 HRC	rest
work hot steel. ry good sulfidat	eposited weld metal with has r and galling.	
0,8 1,7	- 50-62 HRC	-
	e of chromium carbides in a cobalt matrix, giving the alloy excellent	

COBALT BASE APPLICATIONS

Applications/Wear	Abrasive	Corrosion	Erosion	Oxidation	Abrasive wear	Cavitation	Impact	Heat	Thermal Shock	Fatigue	Fretting	Cutting	Alloy
Steel								1					
Sheet and scale breaker roller	+	+			+			+					Co12
Tube mill- Piercing plugs	+		+		+				+				Co6, 21
Soaking pit - tong bits	+							+	+				Co1, 6, 12
Bar mill - twwist & guide rolls					+		+	+	+				Co12
Hot shears					+			+	+				Co6, 21
Galvanized rolls		+			+			+					Co6
Forging and pressing	1	1	1	1	1	1	1	1		1	r	T	
Forging dies & hot work tools			+				+	+	+	+	ļ	ļ	Co6,, 21
Cold work tools, pressing												+	Co1, 12
Power generation	ŗ	ŗ	T	r	T	r	T	ř	ř	ř	ř	ř	
Steam valves			+			+		+					C06
Erosion shields			+			+		+					Co6
Valves, pumps etc	+	+	+		+			+					Co1, 6, 12, 21, 25
Cutting	1	1	1	1	1	1	1	1	1	Ī	ī	ī	
Chain saw bars					+			+	+				Co6, 12
Scraper knives	+	+							ļ				Co6, 12
Saw tipping	+				+			+	+				Co12
Knives (carbet, rubber)	+	+			+			+					Co6, 12
Cutter rolls	+	+											Co12
Aircraft													
Turbine blade tipping			+					+					Co12
High pressure blade			+					+					Co6
Gas turbine lock plates				+							+		Co25
Timber, paper, pulp			1	,	1		1						1
Tipping saw blades	++	+				1		[[Ì	l I	ľ	Co12
Chain saw guide bars	+	+			+								Co12
Chipping knives	+	+											Co12
Hydropulper disc segments	+	+						+					Co1
Rotary feeder	+	+											Co6, 12
Paper slitters, knives	+												Co12
Petrol engine											1	1	
Valve seats, steam tips	+	+	+		+	1		+	+	+			CO6, 12
Combustion engines						L				L	L	L	
Valve seats, cages, rocker pad	+	+	+		+			+	+	+	1	1	Co6, 12
Crossheads					+			+	+				Co1
Shipbuilding			J				1				<u>,</u>	<u>,</u>	
Bearings for rudder stocks	+	+			+	1		1	ĺ	Ì	l –	Ì	Co6
Rudders, stabilizers, hydro-	+	+			+								Co6
planes													
Chemical & petrochemical													
Valves, seats, discs, gates	+	+	+		+			+					Co1, 6, 12, 21, 25
Pumps: Impellers, rotors, seals	+		+		+	+		+					Co1, 6, 12, 21, 25
Pumps: Balancing drums, shafts	+	İ	+		+	+		+					Co1, 6, 12, 21, 25
Agitators: Bearings & paddles	+	+		1	+	1		+	1	1			Co6
Screws: Conveyor & extruders	+	+	+	İ	+	İ		+		1			Co6, 12
Oil drilling: Rock bits	+				+								Co1, Co190
Rubber													
Fly & dead knives	+												Co12
Mixer rotors, bodies & tips sides	+	+	+					+					Co1, 6
Others													
Screws, sewage, plastic extrusion	+	+			+			+					Co1, 6, 12
Centrifuge screw flights	+	+			+			+					Co1
Mechanical seals		+		+									Co6, 12
Brick trimming dies	+												Co6
blick unninning dies	+												00

WORK HARDENING CORED WIRES

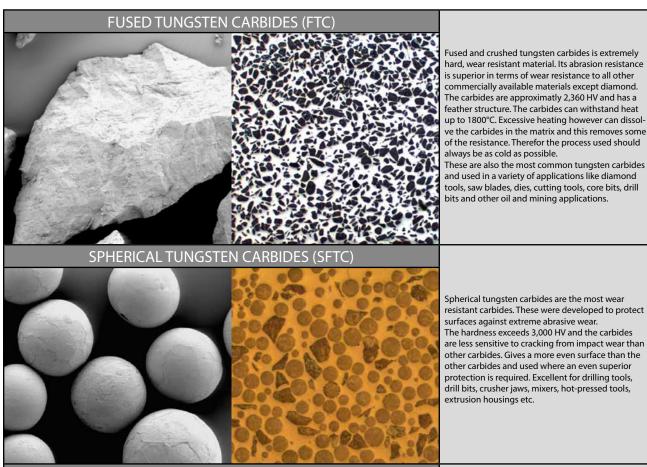
M21/C1 3 d steels and se steels etc. 00-CKNPZ IPZ 0). The comp 350° C, stainle t ductile wel shovels, high -KNP -st he deposi ring worn pa . The alloy sh	0,1 0lete austess and r d metal. n tensile t 1,1 ition of a irrts of sin	0,5 tenitic w not mag The dep tools and 0,3 0,3	6 reld maternetic. FD posits res d dies, cl 14 ggnetic a e materi	19 erial sho 200 K is ist high lutches, 4 ustenitionials as w	8,5 wws high s suitable shrinkag crane wh 0,6 0,6 c 14 % M ell as for	plasticity e for weld ge and in neels, ead n coatin hard fac but in on	y and ca ding stee npact str rthmovin - g, which ing carb	n be appels with resses. ng unde	- blied as a more the rcarriage - n, crack f	a buffer l an 0.7 % e parts, ç free and o severe	layer. The C and o gear whe - and can impact	Rest e deposi ther diffi eels, etc. Rest be work loads. In swing h	As welded: 180-200 Hf After W-H: 400-450 Hf ts can be cult As welded: 200-230 Hf After W-H: 400-450 Hf that case an ammers,
d steels and se steels etc. 00-CKNPZ IPZ 0). The comp 350° C, stainle t ductile wel shovels, high -KNP -KNP -KNP - The alloy sh	stainless 0,1 0lete aust ess and r d metal. tensile t 1,1 1,1 ition of a ints of sin ould be	s steels a 0,5 tenitic w not mag The dep tools and 0,3 non ma nilar bas welded	gainst re 6 reld mate netic. FD oosits res d dies, cl 14 14 gnetic a e materi with a m	egular st 19 erial sho 200 K is ist high utches, 4 ustenitic ials as w inimum	eels. Joir 8,5 ws high s suitable shrinkag crane wh 0,6 c 14 % M ell as for heat inp	plasticity e for weld ge and in neels, ead n coatin hard fac but in on	y and ca ding stee npact str rthmovin - g, which ing carb	n be appels with resses. ng unde	- blied as a more the rcarriage - n, crack f	a buffer l an 0.7 % e parts, ç free and o severe	layer. The C and o gear whe - and can impact	hardfac Rest e deposi ther diff eels, etc. Rest be work loads. In swing h	170-200 HI After W-H: 500 HB ing to avoid As welded: 180-200 HI After W-H: 400-450 HI ts can be cult As welded: 200-230 HI After W-H: 400-450 HI that case an ammers,
es steels etc. 00-CKNPZ IPZ 0). The comp 350° C, stainlo t ductile wel shovels, high -KNP -KNP -s the deposi ring worn pa . The alloy sh	0,1 lete austernation of a austria of sin ould be	0,5 tenitic w not mag The dep tools and 0,3 0,3 non ma nilar bas welded	6 reld materinetic. FD posits resid dies, cl 14 14 ingnetic a re materinetic a re materinetic a	19 erial sho 200 K is ist high lutches, 4 ustenitionals as w hinimum	8,5 wws high s suitable shrinkag crane wh 0,6 c 14 % M ell as for heat inp	plasticity e for weld ge and in neels, ead n coatin hard fac but in on	y and ca ding stee npact str rthmovin - g, which ing carb	n be appels with resses. ng unde	- blied as a more the rcarriage - n, crack f	a buffer l an 0.7 % e parts, ç free and o severe	layer. The C and o gear whe - and can impact	Rest e deposi ther diffi eels, etc. Rest be work loads. In swing h	As welded 180-200 HI After W-H: 400-450 HI ts can be cult As welded 200-230 HI After W-H: 400-450 HI that case an ammers,
IPZ 0). The comp 350° C, stainlo it ductile wel shovels, high -KNP -s the deposi ring worn pa . The alloy sh	lete aust ess and r d metal. n tensile f 1,1 ition of a irrts of sin ould be	tenitic w not mag The dep tools and 0,3 non ma nilar bas welded	reld mater netic. FD posits res d dies, cl 14 gnetic a re materi with a m	erial sho 200 K is ist high utches, 4 ustenitionals as w hinimum	ws high s suitable shrinkag crane wh 0,6 c 14 % M ell as for h heat inp	e for weld ge and in neels, ear - n coatin hard fac but in on	ding stee npact str rthmovii - g, which ing carb	els with resses. ng unde - - n is tough ron steel	more th rcarriag	an 0.7 % e parts, <u>c</u> - free and o severe	C and o gear whe - - and can impact	e deposi ther diffi cels, etc. Rest be work loads. In swing h	180-200 H After W-H: 400-450 H ts can be cult As welded 200-230 H After W-H: 400-450 H that case an ammers,
850° C, stainli at ductile wel shovels, high -KNP -s the deposi ring worn pa . The alloy sh	ess and r d metal. n tensile 1,1 ition of a arts of sin ould be	not magination of the dep tools and 0,3 0,3 non manilar bas welded	netic. FD posits res d dies, cl 14 gnetic a e materi with a m	2200 K is ist high utches, 4 ustenitio ials as w hinimum	s suitable shrinkag crane wł 0,6 c 14 % M ell as for heat inp	e for weld ge and in neels, ear - n coatin hard fac but in on	ding stee npact str rthmovii - g, which ing carb	els with resses. ng unde - - n is tough ron steel	more th rcarriag	an 0.7 % e parts, <u>c</u> - free and o severe	C and o gear whe - - and can impact	ther diffiered, etc. Rest be work loads. In swing h	cult As welded: 200-230 Hi After W-H: 400-450 Hi thardened up that case an ammers,
es the deposi ring worn pa . The alloy sh	ition of a arts of sin ould be	non ma nilar bas welded	ignetic a se materi with a m	ustenitio ials as w inimum	c 14 % M ell as for heat inp	hard fac out in on	ing carb	on steel	s parts t	o severe	impact	be work loads. In swing h	200-230 H After W-H: 400-450 H chardened u that case an ammers,
ring worn pa . The alloy sh	ould be	nilar bas welded	e materi with a m	ials as w iinimum	ell as for 1 heat inp	hard fac out in on	ing carb	on steel	s parts t	o severe	impact	loads. In swing h	that case an ammers,
					.,_	0,6	-	-	-	-	-	Rest	As welded 230-260 H After W-H: 450-500 H
type. The cor I not magnet leels, earthm	ic. The d	eposits ı	resist hig	gh shrinl	kage and	impact							
	0,2	<3	9- 11	18- 20	-	-	-	-	-	-	9- 11	Rest +N	As welded: 280-300 HI After W-H: 450 HB
ch longer life	time tha	n other	used co	nventior	nal alloys	like Ste	llite, 13C	r – 4 Ni (or marte	ensitic Cł			high resistan
M21/C1 3	0,1	0,8	1,3	29	8,6	0,3	-	-	-	-	-	-	As welded 240 HB After W-H: 450 HB
n n	n longer life with cavita A21/C1 3 d high ferri led or mini	h longer lifetime that with cavitation and A21/C1 3 0,1 d high ferrite ratio of led or minimized. The inless steels. Joining	h longer lifetime than other with cavitation and erosion A21/C1 3 0,1 0,8 d high ferrite ratio which all led or minimized. The weld inless steels. Joining stainles	n longer lifetime than other used co with cavitation and erosion wear lik M21/C1 3 0,1 0,8 1,3 d high ferrite ratio which allow it to led or minimized. The weld deposit inless steels. Joining stainless steels	n longer lifetime than other used convention with cavitation and erosion wear like water A21/C1 3 0,1 0,8 1,3 29 Id high ferrite ratio which allow it to benefit Id or minimized. The weld deposit workhai inless steels. Joining stainless steels to mild	n longer lifetime than other used conventional alloys with cavitation and erosion wear like water-turbines M21/C1 3 0,1 0,8 1,3 29 8,6 M21/C1 3 0,1 0,8 <	n longer lifetime than other used conventional alloys like Stewith cavitation and erosion wear like water-turbines or hydrowith cavitation and erosion n longer lifetime than other used conventional alloys like Stellite, 13C with cavitation and erosion wear like water-turbines or hydraulic or g 1/21/C1 3 0,1 0,8 1,3 29 8,6 0,3 - Id high ferrite ratio which allow it to benefit from extreme tolerance teled or minimized. The weld deposit workhardens and gives good we 1 <	n longer lifetime than other used conventional alloys like Stellite, 13Cr – 4 Ni of with cavitation and erosion wear like water-turbines or hydraulic or gas system M21/C1 3 0,1 0,8 1,3 29 8,6 0,3 - Id high ferrite ratio which allow it to benefit from extreme tolerance to hot crated or minimized. The weld deposit workhardens and gives good wear and friinless steels. Joining stainless steels to mild and low-alloyed steels. Buffer layer	n longer lifetime than other used conventional alloys like Stellite, 13Cr - 4 Ni or marter with cavitation and erosion wear like water-turbines or hydraulic or gas system composition of the system compositicant composites and the composition of the system compositien of th	n longer lifetime than other used conventional alloys like Stellite, 13Cr – 4 Ni or martensitic CF with cavitation and erosion wear like water-turbines or hydraulic or gas system components. M21/C1 3 0,1 0,8 1,3 29 8,6 0,3 - - - Id high ferrite ratio which allow it to benefit from extreme tolerance to hot cracking and to dilled or minimized. The weld deposit workhardens and gives good wear and friction resistance inless steels. Joining stainless steels to mild and low-alloyed steels. Buffer layers before hardson in the steels.	In longer lifetime than other used conventional alloys like Stellite, 13Cr – 4 Ni or martensitic Chrome-s with cavitation and erosion wear like water-turbines or hydraulic or gas system components. M21/C1 3 0,1 0,8 1,3 29 8,6 0,3 - - - Id high ferrite ratio which allow it to benefit from extreme tolerance to hot cracking and to dilution wited or minimized. The weld deposit workhardens and gives good wear and friction resistance. Example	A21/C1 3 0,1 0,8 1,3 29 8,6 0,3 -	

IMPACT RESISTANT CORED WIRES

PRODUCT	CLASSIFICATION						CAL CON							
_		C	SI	MN	CR	NI	МО	TI	V	W	NB	CO	FE	HARDNESS
725	DIN EN 14700 T Fe1	0,07	0,5	1,3	1,6	-	0,2	-	-	-	-	-	Rest	250 HB
ferritic steels	used for rebuilding of worn hardened st pefore hardfacing with wires providing h Is and dies etc.	•												•
730	DIN EN 14700 T Fe1	0,15	0,7	1,5	2	-	0,2	-	-	-	-	-	Rest	350 HB
	s used for surfacing and rebuilding parts shaft ends, rail tracks etc.	subjecte	ed to hig	h impac	t and hi	gh com	oressive	stresses	. Track p	ads and	rollers, r	noulds, o	dies, gea	r teeth, mill
740	DIN EN 14700 T Fe2	0,4	0,7	1,5	2,5	-	0,5	-	-	-	-	-	Rest	450 HB
idlers, chains	used for surfacing and rebuilding parts and drive sprockets, excavator pads, elec dredge links, mixer parts, rail car coupling	tric show	el track	carrier r	olls, stee	l shafts,	gear tee	eth, cran	e wheel	s, steel n	nill rolls,	•		
FD 495	DIN EN 14700 T Fe8-50-CKTZW DIN 8555 MF 3-GF-50-CKTZW	0,1	0,7	0,4	15	-	3,2	-	-	-	-	14,0	Rest	As welded: 48-50 HRC After W-H: 53 HRC
sliding wear o	weld deposit on Fe, Cr, Co, Mo-basis has a f metallic objects. Deposits can be work g rolls, pinch rolls, hot strip mill table rol	hardene	d up to	53 HRC					-		-	-		-
FD 580	DIN 8555 MF 6-50-PT	0,25	0,6	1,8	6,5	-	1,5	-	0,3	1,2	-	-	Rest	48-52 HRC
	o-, W- alloyed flux cored wire is suitable f ependant on the base material. With cor				•	•								5
760	DIN EN 14700 T Fe2	0,5	0,7	1,2	6	-	0,7	-	-	-	-	-	Rest	55-60 HRC
	cored wire used for hardsurfacing comp s, chutes, pump housings, conveyor scre			-									r blades,	crusher jaws,
FD 600	DIN EN 14700 T Fe8 (MF 6-55-PT)	0,5	1	3	6,5	-	0,8	-	0,4	-	-	-	Rest	55-58 HRC
with relatively	x core wire which enables a CrMoV alloy slow cooling rates. Crack resistance is go ng is good. Parts subjected to abrasion, i	ood in ca	ase of ac	lequate	preheat	and inte	erpass te	mperati	ure toge	ther wit	h slow c	ooling at		
FD 600 TIC	DIN EN 14700 T Fe8-60-GP	1,8	1,6	1,4	7	-	1,4	5	-	-	-	-	Rest	56-58 HRC
	a flux core wire with tough deposit, not and lips, sand pumps, impellers and scre		to impa	act load:	s. It show	vs excell	ent resis	tance to	impact	in comb	ination	with abr	asion. R	oller presses,
FD 601	DIN EN 14700 T Fe6-60-PT DIN 8555 MF 6-60-PT	0,5	1	3	6,5	-	1,5	-	1,5	1	-	-	Rest	55-58 HRC
with relative	ux core wire which enables a CrMoWV al y slow cooling rates. Crack resistance is <u>c</u> npering is good. Parts subjected to abras	good in c	ase of a	dequate	e prehea	t and in	terpass t	emperat	ture tog	ether wi	th slow (cooling a	after wel	ding. Resi-
FD 609	DIN EN 14700 T Fe8-55-RP DIN 8555 MF 6-55-RP	0,5	2,8	1,2	9,5	0,3	-	-	-	-	-	-	Rest	55-57 HRC
and medium	ed flux core wire for wear resistant hardfa abrasion. The deposit is despite the high redders, cutting-tools, and fluid valves ar	hardnes	s crack f	ree also	in multi	ple laye	rs and ca				-	-		

ABRASION RESISTANT CORED WIRES

PRODUCT	CLASSIFICATION					CHEMIC	CAL CON	NPOSITIO	DN (%)					
	-	С	SI	MN	CR	NI	MO	TI	V	W	NB	CO	FE	HARDNESS
FD 42	DIN EN 14700 T Fe14-45-CGT	1,9	1	1,0	28	3	0,8	-	-	-	-	-	Rest	41-44 HRC
FD 42 is a flux	cored wire for hardfacing with resistance	ce to wea	ar and co	prrosion.	The dep	bosit is h	igh Cr-,	Ni-, Mo-,	and C-a	lloyed a	nd is use	ed at any	place w	here corrosive
	asive wear is expected. Welds can be car Id food industry, chemical industry.	ried out	crackfre	e. The al	loy can l	be work	ed with i	metalloi	d cutting	g tools. V	/egetabl	e oil extr	usion pr	esses, meat
FD 51	DIN 8555 MF 10-50-G	4,5	1,2	0,4	21	-	-	-	-	-	-	-	Rest	58-59 HRC
	DIN EN 14700 T Fe 15-55-G												B+	
	re with excellent resistance to abrasion a		•									•		be heat
	ined or forged. Waste crushers, shredde	1			29					is, scrap				
FD 55	DIN 8555 MF 10-60-GR DIN EN 14700 T Z Fe14-60-G	4,8	1,2	0,6	29	-	-	-	-	-	-	-	Rest	55-59 HRC
FD 55 is a flux	core wire which deposits a high CrC-all	oyed sta	inless we	eld meta	al with e	xcellent	resistan	ce to abr	asion ar	nd mediu	um impa	ict. It car	n be used	d whenever
-	accompanied by corrosion is expected. deposits can not be heat treated, machi					-			imum d	eposit tl	hickness	of 8 mm	n is recor	nmended.
	•	1			i i	and tran		rews.			1		Deet	
FD 55 Mo	DIN 8555 MF 10-60-GT DIN EN 14700 T Z Fe14-60-GT	5	1,7	0,4	27	-	1,2	-	-	-	-	-	Rest	57-60 HRC
FD 55 Mo is a	flux core wire, which deposits a high C-0	Cr-Mo-al	loyed sta	ainless w	veld met	al with e	excellent	t resistar	ice to ab	prasion a	nd medi	ium imp	act. It ca	n be used
-	h abrasion accompanied by corrosion is							-		-				
	sults are achieved by welding in two lay										g depos	its can n	ot be he	at treated,
	forged. Bucket teeth and lips, sand pum			r		iping, in		and tran	sport sc	rews.	1	1	Deat	
FD 59 L	DIN 8555 MF 10-60-CGT DIN EN 14700 T Z Fe14-60-CG	3,8	1,2	0,2	33	-	0,5	-	-	-	-	-	Rest	57-59 HRC
FD 59 L is a flu	ux core wire, which deposits a high CrC-a	alloy. It c	an be us	ed wher	never hi	gh abras	ion acco	ompanie	d by cor	rosion is	expecte	ed. It is n	ot recon	nmended for
	conditions. FD 59 L is deposited crack fre		-											-
· ·	perature maintained throughout the con nieved by welding in two layers. A maxin	•												
	acing on pumps, mixers, impellers and s								-				,	
FD 60	DIN EN 14700 T Z Fe15-60-G	5,2	1,1	0,2	22	-	-	-	-	-	7	-	Rest	61-63 HRC
FD 60 is a flu	x core wire for hardfacing especially for	extreme	abrasive	e wear. T	he depc	sit has a	ledebu	ritic stru	cture wi	th differe	ent very	hard typ	es of ca	rbide.
	where ever abrasive wear is extremely	-					-					-		
	are achieved by welding in two layers. A d. Hardfacing on parts for coal mining eq							ended. T	he result	ting dep	osits car	nnot be l	neat trea	ted, machi-
	5, 5	<u></u>		r	1	luustne	s.	1		1	7	1	Post	62.65 HDC
FD 61	DIN 8555 MF 10-65-G DIN EN 14700 T Z Fe15-65-G	5,2	1,3	0,2	22	-	-	-	-	-		-	Rest +B:	62-65 HRC
													1,0	
FD 61 is a flu	x core wire for hardfacing and is resistan	nt to extr	eme abr	asive we	ear. The o	deposit l	has a led	leburitic	structur	e with a	high co	ntent of	differen	t hard phases.
	at extreme abrasive wear due to its exc			-					-					
	n two layers. A maximum deposit thickn I mining equipment, cement and minera			comme	nded. Th	ne resulti	ing depo	osit cann	ot be he	eat-treat	ed, macł	nined or	forged. I	Hardfacing on
FD 62	DIN 8555 MF 10-60-G	5,4	1,2	0,2	27	-	_	-	_	_	3	_	Rest	60-63 HRC
	DIN EN 14700 T Z Fe15-60-G	5,4	1,2	0,2	27								nest	00 05 mile
-	h C-Cr-alloyed flux core wire. The alloy is	-	-					-						
	of hard phases like hypereutectic M7C3-													
Ni-Hard IV.	ayers with a maximum height of 10 mm.	wear pla	ates, spil	lea rolle	rs, ceme	ant and c	oncrete	pumps,	ureagin	g teeth,	siag bre	akers, co	ike oven	sides and
FD 64	DIN 8555 MF 10-65-GZ	5,0	1,2	0,2	26	-	-	-	0,8	1	-	-	Rest	63-65 HRC
	DIN EN 14700 T Fe16-65-GZ	5,0	.,2	, <u> </u>									+B:	
													1,0	
FD 64 is a C-C	r-B-alloyed flux core wire resistant to he	avy mine	eral abra	sion at e	levated	tempera	ature. Ce	ement in	dustry, r	nineral a	and brick	cindustr	y, mining	g industry and
parts subject	to heavy wear in combination with temp	perature	•											


elt*lit

	CLASSIFICATION			MN	CR	CHEMI NI	CAL COM MO	MPOSITI TI	(%) NC V		NB	CO	FE	HARDNESS
FD 65	DIN 8555 MF 10-65-GZ DIN EN 14700 T Fe16-65-GTZ	5,2	1	0,2	21	-	7	-	1	2	7	-	Rest	63-65 HRC
many differer of slag, welda	k core wire for hardfacing application e nt very hard types of carbides. FD 65 is ability is excellent. Best results are achi treated, machined or forged. Blast f	used when	re extrei elding ir	me abra: n two lay	sive wea ers. A m	r is expe aximum	cted eve deposit	en at elev thickne	vated tei ss of 8 m	mperatu m is rec	res up te ommen	o 600°C. ded. The	The dep resultin	osit is free
FD 75	DIN 8555 MF 10-65-GZ DIN EN 14700 T Fe16-65-GZ	5,2	1,2	0,6	21	-	4	-	0,6	1,2	6,2	-	Rest	62-64 HRC
to 600-700°C	as a ledburic structure with many diff The deposit is free of slag, weldability Slag conveyor screws, scrapers, hot s	is exceller	nt. Best r											
FD 78	DIN 8555 MF 10-70-G DIN EN 14700 T Fe16-70-G	5	1,3	0,5	16	-	-	-	6	-	6,5	-	Rest +B: 1,2	64-68 HRC
A maximum o	-alloyed flux core wire against extreme deposit thickness of 8 mm is recomme ines, gravel industry, chains, clinker in	nded. The	resulting	g depos	-	-							-	
FD 79	DIN 8555 MF 10-70-G DIN EN 14700 T Fe16-70-G	5	1	-	21	-	-	-	2,5	-	6	-	Rest +B: 1,3	64-68 HRC
	C. Best results will be achieved by weld conveyer screws, Hardfacing on parts fo	-			-									
mixer parts, c FD 720	DIN EN 14700 T Fe13-65-G	0,7	1	2	-	2	-	-	-	-	-	-	Rest +B: 4,5	64-66 HRC
FD 720 C-Ni-B alloye	DIN EN 14700 T Fe13-65-G ed flux cored wire. The weld deposit is	0,7 suitable fo	1 r parts s	2 ubject te	- o metal	2 to metal	- friction	- and seve					+B: 4,5	
FD 720 C-Ni-B alloye	DIN EN 14700 T Fe13-65-G	0,7 suitable fo	1 r parts s	2 ubject te	- o metal	2 to metal	- friction	- and seve					+B: 4,5	
FD 720 C-Ni-B alloye borides and FD 721 Flux cored wi wear at eleve	DIN EN 14700 T Fe13-65-G ed flux cored wire. The weld deposit is ironcarbides. Welds have a high hardr DIN EN 14700 T Z Fe8 re with alloyed Fe-B-Cr-weld metal wit tad temperatures up to 450°C. Due to	0,7 suitable fo less even a 1,5	r parts s t the firs	2 ubject to st layer a 2 rbide str	o metal f nd also 16 ucture. I	2 to metal on stainl - t is suita	- friction ess stee - ble for h	and seve I. Single	layer we	lding is - sistant h	recomm - nardfacir	ended. - ngs that	+B: 4,5 1 load. It Rest +B: 3,5 are expo	is rich in iron 64-66 HRC osed to high
FD 720 C-Ni-B alloye borides and FD 721 Flux cored with	DIN EN 14700 T Fe13-65-G ed flux cored wire. The weld deposit is ironcarbides. Welds have a high hardr DIN EN 14700 T Z Fe8 re with alloyed Fe-B-Cr-weld metal wit tad temperatures up to 450°C. Due to	0,7 suitable fo less even a 1,5	r parts s t the firs	2 ubject to st layer a 2 rbide str	o metal f nd also 16 ucture. I	2 to metal on stainl - t is suita	- friction ess stee - ble for h	and seve I. Single	layer we	lding is - sistant h	recomm - nardfacir	ended. - ngs that	+B: 4,5 1 load. It Rest +B: 3,5 are expo	is rich in iron 64-66 HRC osed to high
FD 720 C-Ni-B alloye borides and FD 721 Flux cored wi wear at eleve plates, ceram FD 723 Flux cored wi	DIN EN 14700 T Fe13-65-G ed flux cored wire. The weld deposit is ironcarbides. Welds have a high hardr DIN EN 14700 T Z Fe8 ire with alloyed Fe-B-Cr-weld metal with tad temperatures up to 450°C. Due to ic industry. DIN EN 14700 T Z Fe8 ire with alloyed C-Cr-B weld metal with	0,7 suitable fo less even a 1,5 th a marter its high ha 1,6	r parts s t the firs 1 nsitic can rdness t 1,4	2 ubject tr st layer a 2 bide str he hard 0,2 pide stru	o metal i nd also 16 ucture. I facing sh 7,5 cture wi	2 to metal on stainl t is suita nould no	- friction ess stee - ble for h t exceec	- and seve I. Single - ighly ab I 4mm th	layer we	lding is - sistant l Feed sc -	recomm - nardfacin rews, sa	ended. - ngs that nd prep -	+B: 4,5 load. It Rest +B: 3,5 are expo aration p Rest +B: 4,6	is rich in iror 64-66 HRC osed to high plants, wear 65-70 HRC
FD 720 C-Ni-B alloye borides and FD 721 Flux cored wi wear at eleve plates, ceram FD 723 Flux cored wi	DIN EN 14700 T Fe13-65-G ed flux cored wire. The weld deposit is ironcarbides. Welds have a high hardr DIN EN 14700 T Z Fe8 ire with alloyed Fe-B-Cr-weld metal with tad temperatures up to 450°C. Due to ic industry. DIN EN 14700 T Z Fe8	0,7 suitable fo less even a 1,5 th a marter its high ha 1,6	r parts s t the firs 1 nsitic can rdness t 1,4	2 ubject tr st layer a 2 bide str he hard 0,2 pide stru	o metal i nd also 16 ucture. I facing sh 7,5 cture wi	2 to metal on stainl t is suita nould no	- friction ess stee - ble for h t exceec	- and seve I. Single - ighly ab I 4mm th	layer we	lding is - sistant l Feed sc -	recomm - nardfacin rews, sa	ended. - ngs that nd prep -	+B: 4,5 1 load. It Rest +B: 3,5 are expo aration p Rest +B: 4,6 h hardnee Rest +B:	is rich in iror 64-66 HRC osed to high plants, wear 65-70 HRC
FD 720 C-Ni-B alloye borides and FD 721 Flux cored wi wear at eleve plates, ceram FD 723 Flux cored wi first layer and FD 733 is a flu extremely ha impact resista	DIN EN 14700 T Fe13-65-G ed flux cored wire. The weld deposit is ironcarbides. Welds have a high hardr DIN EN 14700 T Z Fe8 ire with alloyed Fe-B-Cr-weld metal with tad temperatures up to 450°C. Due to ic industry. DIN EN 14700 T Z Fe8 ire with alloyed C-Cr-B weld metal with also on stainless steel. Maximum ope DIN 8555 MF 10-70-GT	0,7 suitable fo less even a 1,5 th a marter its high ha 1,6 1,6 a martener rating tem 4 I chrome-ce e achieved ing temped	r parts s t the firs 1 nsitic car rdness t 1,4 sitic carb perature 0,8 . arbides I. It is sui	2 ubject tr st layer a 2 bide str he hard 0,2 0,2 0,2 1,5 1,5 and nio itable fo	o metal i nd also 16 ucture. I facing sh 7,5 cture wi C. 19 bium-ca r hardfao	2 to metal on stainl t is suita nould no t h additi th additi th additi trbides e cing on p	- friction ess stee - ble for h t exceec - onal iron mbedde parts req	and seve I. Single - ighly ab I 4mm th - n- and cl - ed in a Fe wiring h	rasion renickness.	Iding is sistant H Feed sc orides. V - ix. The v sion resi	recomm 	ended. 	+B: 4,5 load. It Rest +B: 3,5 are expo aration p Rest +B: 4,6 h hardne Rest +B: 1,4 ery fine- the same	is rich in iror 64-66 HRC osed to high blants, wear 65-70 HRC ess even in th 66-68 HRC grained and time minor

TUNGSTEN CARBIDES CORED WIRES

PRODUCT	CLASSIFICATION	CHEMICAL COMPOSITION (%)	
			HARDNESS
NIFD	DIN EN 14700 T Ni20 DIN 8555 MF21-55-CGZ	Ni-Matrix with 50-62% FTC	FTC: 2,360 HV Matrix: 450-480 HV
against extreme al has a low melting resistant to acids, l	orasive wear in combination with corro range of between 900 – 1050°C (1,652 pases, lye and other corrosive media. R	de and NiCrBSI- matrix for semi-automatic welding application. NIFD was developsion attacks. The deposit alloy consists of approximately 60% FTC and 35 - 40% – 1,922°F) and feature a self fluxing characteristic producing a smooth and cleatepairing and hard facing ferritic and austenitic steel tools and machine parts (sund stabilizers in the petroleum industry.	6 Ni-Cr-B-Si-matrix. The alloy an surface. The matrix is highly
NIFD Plus	DIN EN 14700 T Ni20 DIN 8555 MF21-55-CGZ	Ni-Matrix with 50-63% SFTC	SFTC: 3,000 HV Matrix: 450-480 HV
with a higher hard	ness than FTC. NIFD was developed to	rbide and NiCrBSi- matrix for semi-automatic welding application. The SFTC sh protect surfaces against extreme abrasive wear in combination with corrosion D applications when even superior wear protection through spherical SFTC is i	attacks. While having similar
Ni2	DIN EN 14700 T Ni20 DIN 8555 MF21-55-CGZ	Ni-Matrix with 50-62% FTC and special carbides	FTC: approx. 2,360 HV Other carbides: 2,900 HV Matrix: 450-480 HV
tion. NI2 was deve – 1050°C (1,652 – 1 corrosive media. W	loped to protect surfaces against extre 1,922°F) and feature a self fluxing chara	hard carbides together with fused tungsten carbide and NiCrBSi- matrix for ser eme abrasive wear in combination with corrosion attacks. The alloy has a low m acteristic producing a smooth and clean surface. The matrix is highly resistant t , NI2 can be applied in many NIFD applications when extra matrix protection is icle impact.	elting range of between 900 o acids, bases, lye and other
FD 771	DIN EN 14700 T Ni20 DIN 8555 MF21-55-CGZ	Ni-Matrix with 45% FTC	FTC: 2,360 HV Matrix: 450-480 HV
against extreme al melting range of b to acids, bases, lye	prasive wear in combination with corre- petween 900 – 1050°C (1,652 – 1,922°F	bide and NiCrBSi- matrix for semi-automatic welding application. It was develop osion attacks. The deposit alloy consists of approximately 45% FTC and a Ni-Cr-) and feature a self fluxing characteristic producing a smooth and clean surface and hard facing ferritic and austenitic steel tools and machine parts (steel casti ilizers in the petroleum industry.	B-Si-matrix. The alloy has a low . The matrix is highly resistant
FD 779	DIN EN 14700 T Ni20 DIN 8555 MF21-55-CGZ	Ni-Matrix with 50-65% MCWC	MCWC: >1700 HV Weld metal: 490-540 HV
consists of approx. charac teristic proc	. 50 - 65 % MCWC and an austenitic Ni ducing a smooth and clean surface.The	to protect surfaces against extreme abrasive wear in combination with corrosi -matrix. The alloy has a low melting range of between 900 – 1050°C (1,652 – 1,9 e alloy has a much lower melting point than commonly used iron based Flux Co ucing a smooth and clean surface. The matrix shows a good resistance to corro	22°F) and feature a self fluxing ored Wires with MC tungsten
OA	DIN EN 14700 T Fe20 DIN 8555 MF21-65-CG	Fe-Matrix with 50-62% FTC	FTC: 2,360 HV Weld metal: 1st layer 63-66 HRC 2nd layer 66-68 HRC
For hard facing lov	v alloyed steels that have a maximum	ed tungsten carbide for semi-automatic application, where extreme abrasive we of 0.45% carbon. Higher carbon content could lead to cracking. Also for hard fa ration, earth moving, tunneling shields, road construction, well drilling and dee	cing and repairing tools and
ОАМ	DIN EN 14700 T Fe20 DIN 8555 MF21-65-CG	Fe-Matrix with 50-60% MCWC	MCWC: >1700 HV Weld metal: 63-66 HRC
ted. For hard facin	g low alloyed steels that have a maxim	acro chrystalline tungsten carbide for semi-automatic application, where extre num of 0.45% carbon. Higher carbon content could lead to cracking. Also for ha xcavation, earth moving, tunneling shields, road construction, well drilling and	rd facing and repairing tools

TUNGSTEN CARBIDES

MACRO-CHRYSTALLINE TUNGSTEN CARBIDES (MCWC)

Macro-Chrystalline tungsten carbides have a higher thermal stability and this will lead to less dissolution after welding and applications involving higher heat input. A high density carburized powder with higher carbon content than the other carbides. This makes them also a bit more brittle than above carbides and can more easily crack when exposed to impact. They have a hardness of 1,700-2000 HV and carbides can stay in service up to 500°C. Used for excavation, earth moving and deep drilling applications. Used for diamond tools, drill bits etc.

NICKEL BASE cored wires

		C	SI	MN	CR	NI	MO	AL	V	W	NB	TI	CO	FE	HARDNESS
520W	DIN 8555 MF 23-40-CKPTZ DIN EN 14700 T Ni2-40- CKPTZ	0,05	-	-	19	Rest	6	2	0,3	5	-	3	10	-	As welded 32-35 HRC After W-H: 45 HRC
alloy with a	osits a CrCoMoTiAlW-alloyed ni an exceptional combination of pre-heated to a temperature of plades	high tem	perature	e mechar	nical pro	perty, for	geability	and cor	rosion re	sistance	. To obta	in a crac	k free de	posit, th	e work piece
521W	DIN 8555 MF 23-40-CKPTZ DIN EN 14700 T Ni2-40- CKPTZ	0,06	0,8	0,5	20	Rest	6	2	-	0,8	-	3	11	3,0	As welded 32-35 HRC After W-H: 45 HRC
alloy with a	osits a CrCoMoTiAIW-alloyed ni an exceptional combination of pre-heated to a temperature of plades.	high tem	perature	e mechar	nical pro	perty, for	geability	and cor	rosion re	sistance	. To obta	in a crac	k free de	posit, th	e work piece
Co	DIN EN 14700 T Ni2-250- CKNPT W.N 2.4887	0,08	-	-	16	Rest	16	-	0,3	4,5	-	-	2,5	<5	As welded 260-280 H After W-H: 420 HB
media. Whe	applied by shielded arc welding en first applied to hot forging c osit increases in hardness up to piercing punches, rolling and w	dies, the o o 400 HB	overlay is without	very col deformir es, pump	hesive. E ng. For h os and va	xposed to ardfacing Ilves for t	o impact I on forg	and pre	ssure loa hot shea	id and ev r blades,	ren at ele lime kilr	evated te burner	mperatu	ire, the i	esulting har
625	ISO 18274: S-Ni 6082	0,02	0,4	0,02	22	Rest	0,0	-			-,.				
625 Flux cored	(NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3 nickel base wire for gas shielde	ed arc we	lding. De	esigned f	for all-po	sition op	erability		-		re streng				
625 Flux cored to general high alloy a	(NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3	ed arc we	lding. De	esigned f racking in	for all-po n severe	sition op chloride	erability media. F	or weldi	ng of allo	oy 625, al	re streng lloy 825,	alloy 25-	6MO, an	d a wide	e range of
625 Flux cored to general high alloy a	(NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3 nickel base wire for gas shielde corrosion, pitting, crevice and s	ed arc we	lding. De	esigned f racking in	for all-po n severe	sition op chloride	erability media. F	or weldi	ng of allo	oy 625, al	re streng lloy 825,	alloy 25-	6MO, an	d a wide	e range of -resistant
625 Flux cored to general high alloy a alloys. SE 1/58 Nickel bas	(NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3 nickel base wire for gas shielde corrosion, pitting, crevice and s austenitic and super austenitic DIN 8555 MF 22-60-CGTZ DIN EN 14700 T Ni1- 60CGTZ se alloy deposit with properties	ed arc we stress cor stainless 0,75	Iding. De rosion cr steels. It 4,7 cobalt al	esigned f racking in is also u	for all-po n severe sed for s 20 terpart 0	sition op chloride urfacing Rest Co1 with	erability media. F of steel, - good ha	for weldi for weld	ng of allo ing 9% N	by 625, al li steels, a	re streng lloy 825, and for w	alloy 25- velding v	6MO, an arious co -	d a wide prrosion <5 +B: 3,2	e range of -resistant 58-62 HRC
625 Flux cored to general high alloy a alloys. SE 1/58 Nickel bas	(NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3 nickel base wire for gas shielde corrosion, pitting, crevice and s austenitic and super austenitic DIN 8555 MF 22-60-CGTZ DIN EN 14700 T Ni1- 60CGTZ	ed arc we stress cor stainless 0,75	Iding. De rosion cr steels. It 4,7 cobalt al	esigned f racking in is also u	for all-po n severe sed for s 20 terpart 0	sition op chloride urfacing Rest Co1 with	erability media. F of steel, - good ha	for weldi for weld	ng of allo ing 9% N	by 625, al li steels, a	re streng lloy 825, and for w	alloy 25- velding v	6MO, an arious co -	d a wide prrosion <5 +B: 3,2	e range of -resistant 58-62 HRC
625 Flux cored to general thigh alloy a alloys. SE 1/58 Nickel bass wear resis SE 6/40 Nickel bass	(NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3 nickel base wire for gas shielde corrosion, pitting, crevice and s austenitic and super austenitic DIN 8555 MF 22-60-CGTZ DIN EN 14700 T Ni1- 60CGTZ tance. Chemical, automotive a DIN 8555 MF 22-40-CGTZ DIN EN 14700 T Ni1-	ed arc we stress cor stainless 0,75 s like the nd food i 0,4 s like the	Iding. Derrosion cr steels. It 4,7 cobalt al ndustry a 4,5 cobalt al	esigned f racking ir is also u loy coun along wi	for all-po n severe sed for s 20 terpart (th nucle 22 terpart (sition op chloride urfacing Rest Co1 with ar techno Rest	erability media. F of steel, good ha logy.	for weldi for weld	ng of all ing 9% N - neat resis	by 625, al i steels, a - tance, te 2	re strenc lloy 825, and for w - mperatu	alloy 25- velding v	6MO, an arious co - resistan	d a wide prrosion <5 +B: 3,2 ce, corro <5 +B: 1,4	e range of -resistant 58-62 HRC osion and 41-43 HRC
625 Flux cored to general thigh alloy a alloys. SE 1/58 Nickel bass wear resis SE 6/40 Nickel bass	(NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3 nickel base wire for gas shielde corrosion, pitting, crevice and s austenitic and super austenitic DIN 8555 MF 22-60-CGTZ DIN EN 14700 T Ni1- 60CGTZ at alloy deposit with properties tance. Chemical, automotive a DIN 8555 MF 22-40-CGTZ DIN EN 14700 T Ni1- 40CGTZ at alloy deposit with properties	ed arc we stress cor stainless 0,75 s like the nd food i 0,4 s like the	Iding. Derrosion cr steels. It 4,7 cobalt al ndustry a 4,5 cobalt al	esigned f racking ir is also u loy coun along wi	for all-po n severe sed for s 20 terpart (th nucle 22 terpart (sition op chloride urfacing Rest Co1 with ar techno Rest	erability media. F of steel, good ha logy.	for weldi for weld	ng of all ing 9% N - neat resis	by 625, al i steels, a - tance, te 2	re strenc lloy 825, and for w - mperatu	alloy 25- velding v	6MO, an arious co - resistan	d a wide prrosion <5 +B: 3,2 ce, corro <5 +B: 1,4	e range of -resistant 58-62 HRC osion and 41-43 HRC
625 Flux cored to general high alloy a alloys. SE 1/58 Nickel bas wear resis SE 6/40 Nickel bas SE 12/50 Nickel bas	(NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3 nickel base wire for gas shielde corrosion, pitting, crevice and s austenitic and super austenitic DIN 8555 MF 22-60-CGTZ DIN EN 14700 T Ni1- 60CGTZ ea alloy deposit with properties tance. Chemical, automotive a DIN 8555 MF 22-40-CGTZ DIN EN 14700 T Ni1- 40CGTZ ea alloy deposit with properties tance. Chemical, automotive a DIN 8555 MF 22-50-CGTZ DIN EN 14700 T Ni1- 50ZGTC ea alloy deposit with properties	ed arc we stress cor stainless 0,75 i like the nd food i 0,4 i like the nd food i 0,6 i like the	Iding. Derrosion cr steels. It 4,7 cobalt al ndustry a 4,5 cobalt al ndustry a 4,9 cobalt al	esigned f racking in is also u loy coun along wi loy coun along wi loy coun	for all-po n severe sed for s 20 terpart 0 th nucles 21 terpart 0 th nucles	sition op chloride urfacing Rest Co1 with ar techno Rest Co6 with ar techno Rest	erability media. F of steel, - good ha blogy. - good ha blogy. 2,5	ior weldi for weld - rdness, h rdness, h	ng of alld ing 9% N - neat resis neat resis	y 625, ai i steels, a tance, te 2 tance, te	re streng lloy 825, and for w - mperatu - mperatu	alloy 25- relding v - rre shock	6MO, an arious co - resistan - resistan	d a wide prrosion <5 +B: 3,2 cce, corro <5 +B: 1,4 cce, corro <5 +B: 2,8	2 range of -resistant 58-62 HRC Dision and 41-43 HRC Dision and 48-52 HRC
625 Flux cored to general high alloy a alloys. SE 1/58 Nickel bas wear resis SE 6/40 Nickel bas SE 12/50 Nickel bas	(NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3 nickel base wire for gas shielde corrosion, pitting, crevice and s austenitic and super austenitic DIN 8555 MF 22-60-CGTZ DIN EN 14700 T Ni1- 60CGTZ ea alloy deposit with properties tance. Chemical, automotive a DIN 8555 MF 22-40-CGTZ DIN EN 14700 T Ni1- 40CGTZ ea alloy deposit with properties tance. Chemical, automotive a DIN 8555 MF 22-50-CGTZ DIN EN 14700 T Ni1- 50ZGTC	ed arc we stress cor stainless 0,75 i like the nd food i 0,4 i like the nd food i 0,6 i like the	Iding. Derrosion cr steels. It 4,7 cobalt al ndustry a 4,5 cobalt al ndustry a 4,9 cobalt al	esigned f racking in is also u loy coun along wi loy coun along wi loy coun	for all-po n severe sed for s 20 terpart 0 th nucles 21 terpart 0 th nucles	sition op chloride urfacing Rest Co1 with ar techno Rest Co6 with ar techno Rest	erability media. F of steel, - good ha blogy. - good ha blogy. 2,5	ior weldi for weld - rdness, h rdness, h	ng of alld ing 9% N - neat resis neat resis	y 625, ai i steels, a tance, te 2 tance, te	re streng lloy 825, and for w - mperatu - mperatu	alloy 25- relding v - rre shock	6MO, an arious co - resistan - resistan	d a wide prrosion <5 +B: 3,2 cce, corro <5 +B: 1,4 cce, corro <5 +B: 2,8	2 range of -resistant 58-62 HRC Dision and 41-43 HRC Dision and 48-52 HRC
625 Flux cored to general - high alloys. SE 1/58 Nickel bas wear resis SE 6/40 Nickel bas wear resis SE 12/50 Nickel bas wear resis SE 12/50 Nickel bas SE 21/35 Nickel bas	(NiCr20Mn3Nb) AWS A5.14: ER NiCrFe-3 nickel base wire for gas shielde corrosion, pitting, crevice and s austenitic and super austenitic DIN 8555 MF 22-60-CGTZ DIN EN 14700 T Ni1- 60CGTZ ea alloy deposit with properties tance. Chemical, automotive a DIN 8555 MF 22-40-CGTZ DIN EN 14700 T Ni1- 40CGTZ ea alloy deposit with properties tance. Chemical, automotive a DIN 8555 MF 22-50-CGTZ DIN EN 14700 T Ni1- 50ZGTC ea alloy deposit with properties tance. Chemical, automotive a DIN 8555 MF 22-50-CGTZ DIN EN 14700 T Ni1- 50ZGTC	ed arc we stress cor stainless 0,75 5 like the nd food i 0,4 5 like the nd food i 0,6 5 like the nd food i 0,35 5 like the	Iding. Derrosion cr steels. It 4,7 cobalt al ndustry a 4,5 cobalt al ndustry a 4,9 cobalt al ndustry a 4,5 cobalt al	essigned f racking in is also u - loy coun along wi loy coun along wi loy coun along wi loy coun	for all-po n severe sed for s 20 terpart (th nucle 21 terpart (th nucle 21 terpart (th nucle 20 terpart (sition op chloride urfacing Rest Co1 with ar techno Rest Co6 with ar techno Rest Co12 with ar techno Co12 with ar techno Co12 with	erability media. F of steel, - - - - - - - - - - - - - - - - - - -	ior weldi for weld - rdness, r rdness, r ardness, -	ng of alld ing 9% N - neat resis neat resis heat resis	y 625, al ii steels, a - tance, te 2 tance, te - istance, te	re streng lloy 825, and for w - mperatu - mperatu - emperatu	alloy 25- relding v - ure shock ure shock	6MO, an rarious co - resistan - - - - - - - - - - - - -	d a wide prrosion <5 +B: 3,2 ce, corro <5 +B: 1,4 ce, corro <5 +B: 2,8 nce, corro <4 +B: 0,7	e range of -resistant 58-62 HRC osion and 41-43 HRC osion and 48-52 HRC rosion and 34-36 HRC

CAST IRON CORED WIRES

Melt*lit

PRODUCT	CLASSIFICATION	CHEMICAL COMPOSITION (%)												
				MN	CR		MO	TI			NB	CO	FE	HARDNESS
116 MCW	EN ISO 1071: T C Z NiFe-1 M	0,5	0,5	2,5	-	60	-	-	-	-	-	-	Rest	180-200 HB
	lloyed filler metal for welding and repair													ent welding
	Welding of highly restrained or thick wa					,	t input is	s low wh	lich favo	urs limit	ed heat	affected	l zone.	
Foundry defe	cts, repair on engine blocks, gearboxes, v	/aive bo	ales, pui	mp bodi	es, crusr	iers etc.						·		
114 MCW	EN ISO 1071: T C NiFeT3-CI M21	0,6	0,6	4	-	45	-	-	-	-	-	-	Rest	160-200 HB
Ferro-nickel a	lloyed filler metal for welding and repair	ing of gr	ey, mall	eable, no	odular a	nd phos	ohorus c	ast iron.	Good fle	ow of th	e weld n	netal an	d excelle	ent welding
caracteristics.	Welding of highly restrained or thick wa	lled pied	es· Preh	eat is no	ot necess	ary. Hea	t input i	s low wh	ich favo	urs limit	ed heat	affected	d zone.	
Foundry defe	cts, repair on engine blocks, gearboxes, v	alve bo	dies, pui	np bodi	es etc.									

COPPER ALLOYS CORED WIRES

PRODUCT														
		CU	AL	SN	MN			FE		HARDNESS				
CuAl12Ni5	EN 14700: T Cu1	Rest	11,5	-	1	4,8	-	2	-	320 HB				
Special cored v	vire for GMAW. The weld metal is a	Cu – Mn –N	i – Al bronze	e. Sound, po	re free depo	sits on ferro	us and non-f	errous base	materials. Bu	uilding up of				
aluminium bro	nze alloys and cladding componer	nts undergoi	ng metal to	metal wear	under high p	oressure. Es	pecially suite	ed for marine	e environme	nts. The addition				
of nickel impro	oves corrosion resistance in heat an	d rough sea	water. Excel	lent resistan	ce to cavitat	ion and stre	ss corrosion	cracking. Sh	nip propeller	s, shafts, guide				
grooves etc														

TOOL STEEL CORED WIRES

	CLASSIFICATION	C		MN	CR	CHEMI NI	CAL CON MO	APOSITIC V	0N (%) W	NB	TI	CO	FE	HARDNESS
WZ 50	DIN 8555 MF 3-50-ST DIN EN 14700 T Fe3-50-STW	0,3	0,6	0,4	3	-	-	0,6	4,5	-	-	-	Rest	As welded 48-50 HRO After H-T: 50-52 HRO
A heat treatr	V-alloyed flux cored wire is suitable for nent is possible and has retention of ha I by forging, pressure and impact stress	irdness u											-	
WZ 55	DIN 8555 MF 3-55-ST DIN EN 14700 T Fe3-50-STW	0,35	0,8	1,2	3	-	-	0,5	7	-	-	2	Rest	As welded 53-56 HRC After H-T: 57-59 HRC
of low alloye	ored wire which deposits an air hardeni d high density steel tools. Slab shears, sure and impact stress.				•									
WZ 57	DIN 8555 MF 4-55-ST DIN EN 14700 T Fe4-55-STW	0,35	0,8	0,8	13	-	2,2	0,25	5,5	-	-	10	Rest	As welded
of low alloye	pred wire which deposits an air hardeni d high density steel tools. Slab shears, sure and impact stress.				,									57-59 HRG
of low alloye	d high density steel tools. Slab shears,				,									
of low alloye forging, pres WZ 59 The wear and	d high density steel tools. Slab shears, sure and impact stress. DIN 8555 MF 4-55-ST	0,6 ed wire el	ng dies, l 0,6 ectrode	hot shea - in high s	r blades 5 peed ste	drawing	dies, co 3,5 :y is suita	ntainers, - Ible for r	crushing 3,5 epair and	g equipn	nent and	depress - f hot and	Rest	57-59 HRC nd flat areas ated by 57-59 HRC prking tools,
of low alloye forging, pres WZ 59 The wear and	d high density steel tools. Slab shears, sure and impact stress. DIN 8555 MF 4-55-ST DIN EN 14700 T Fe4-55-ST d heat resistant deposit of this flux-core	0,6 ed wire el	ng dies, l 0,6 ectrode	hot shea - in high s	r blades 5 peed ste	drawing	dies, co 3,5 cy is suita	ntainers, - Ible for r	crushing 3,5 epair and	g equipn	nent and	depress - f hot and	Rest	57-59 HRC nd flat areas ated by 57-59 HRC prking tools,
of low alloye forging, pres WZ 59 The wear and stamps and o WZ 60 WZ 60 is a co	d high density steel tools. Slab shears, sure and impact stress. DIN 8555 MF 4-55-ST DIN EN 14700 T Fe4-55-ST d heat resistant deposit of this flux-core counter dies. etc. The weld deposit can DIN 8555 MF 4-60-ST	0,6 ed wire el be heat t 0,8 mg and w	ng dies, l 0,6 ectrode reated a 0,6	in high s nd has a 0,4 tant allo	r blades 5 peed ste retentic 4,5 y and ca	drawing eel qualit on of hare - n be app	dies, co 3,5 cy is suita dness up 8 solied as a	- bble for rr to 550 ° 1,5	crushing 3,5 epair and C. High s 2	g equipn - d manufi peed sta	acture of eel tools,	f hot and pinion-1	Rest Cold wc ype cutt Rest	57-59 HR nd flat areas ated by 57-59 HR orking tools, ters, chisels 58-60 HR After air cooling

ness of the weld metal is reached, another is possible by nitration. Al-diecasting mold, Al-edge tools and shearing tools.

COBALT BASE CORED WIRES

Melt*lit

PRODUCT	CLASSIFICATION	С	SI	MN	CHEMIC CR	AL COM	POSITIOI MO	N (%) AL		W	CO	FE	HARDNESS
Co1	EN 14700 T Co3 AWS A5.21 ERCCoCr-C	2,3	1	1	29	-	-	-	-	12	rest	4	20°C 55 HRC 600°C 44 HRC 800°C 34 HRC
	, posit of all standard cobalt alloys, e es over 760°C. Pump sleaves, trans				rosion, re	ducing a	icids, imp	oact, ext	reme we	ar and te	mpeartu	ire shock	s. Retains hardness at
Co6	DIN 8555 MSG20-GF-40-CTZ EN 14700 T Co2 AWS A5.21 ERCCoCr-A	1,1	1	1	29	-	-	-	-	4,5	rest	4	20°C 40-43 HRC 300°C 35 HRC 600°C 29 HRC
	ble and widely used alloy due to o rature liquids, paper and pulp app			ce. Retaiı	ns hardn	ess at ter	nperatur	es up to	500°C. S	team an	d chemic	al valves	, shear blades, pumps fo
Co6 LC	DIN 8555 MSG20-GF-40-CTZ EN 14700 T Co2 AWS A5.21 ERCCoCr-A	0,9	1	1	29	-	-	-	-	4,5	rest	4	20°C 36-39 HRC 300°C 35 HRC 600°C 29 HRC
	, ble and widely used alloy due to c rature liquids, paper and pulp app						•	es up to	500°C. S	team an	d chemic	al valves	, shear blades, pumps fc
Co6 HC	DIN 8555 MSG20-GF-40-CTZ EN 14700 T Co2	1,3	1	1	29	-	-	-	-	4,5	rest	4	20°C 42-46 HRC 300°C 35 HRC
	AWS A5.21 ERCCoCr-A												600°C 29 HRC
-	AWS A5.21 ERCCoCr-A ble and widely used alloy due to o rature liquids, paper and pulp app							es up to	500°C. S	team and	d chemic	al valves	
-	ble and widely used alloy due to o							es up to	500°C. S	team and	d chemic rest	al valves	
high tempe	ble and widely used alloy due to c rature liquids, paper and pulp app EN 14700 T Co2 AWS A5.21 ERCoCr-B ance to corrosion and galling at el	1,6	HC stan	ds for lo 1,5	wer carb 29	on conte	- -	-	-	8,0	rest	3	, shear blades, pumps fo 20°C 45-47 HRC 300°C 37 HRC 600°C 32 HRC
high tempe Co12 High resist	ble and widely used alloy due to c rature liquids, paper and pulp app EN 14700 T Co2 AWS A5.21 ERCoCr-B ance to corrosion and galling at el	1,6	HC stan	ds for lo 1,5	wer carb 29	on conte	- -	-	-	8,0	rest	3	, shear blades, pumps fo 20°C 45-47 HRC 300°C 37 HRC 600°C 32 HRC
high tempe Co12 High resist saw bars e Co21	ble and widely used alloy due to o rature liquids, paper and pulp app EN 14700 T Co2 AWS A5.21 ERCoCr-B ance to corrosion and galling at el tc. EN 14700 T Co1	lications.	HC stan	ds for Io 1,5 ures. Ret	wer carb 29 ains harc 28,5	on conte		- . Commo	- on in the	8,0 wood in	rest dustry fo	3 or large b 4	shear blades, pumps for 20°C 45-47 HRC 300°C 37 HRC 600°C 32 HRC and saw blades, chain 30 HRC work hardening 45 HRC
high tempe Co12 High resist saw bars e Co21	ble and widely used alloy due to o rature liquids, paper and pulp app EN 14700 T Co2 AWS A5.21 ERCoCr-B ance to corrosion and galling at el tc. EN 14700 T Co1 AWS A5.21 ERCCoCr-E	lications.	HC stan	ds for Io 1,5 ures. Ret	wer carb 29 ains harc 28,5	on conte		- . Commo	- on in the	8,0 wood in	rest dustry fo	3 or large b 4	shear blades, pumps for 20°C 45-47 HRC 300°C 37 HRC 600°C 32 HRC and saw blades, chain 30 HRC work hardening 45 HRC
high tempe Co12 High resist saw bars e Co21 High corro Co25 Exceptiona	ble and widely used alloy due to o rature liquids, paper and pulp app EN 14700 T Co2 AWS A5.21 ERCoCr-B ance to corrosion and galling at el tc. EN 14700 T Co1 AWS A5.21 ERCCoCr-E sion and thermal resistance. The a EN 14700 T Co1 DIN 8555 MSG20-GF-250-	lications. 1,6 0,25 0,25 0,15 0,15 useful for t	HC stan	ds for lo 1,5 ures. Ret. 1 Steam 1,5 work hot	wer carb 29 ains harc 28,5 valves, h 20 steel. Th	on conte - Iness up 3 ot shear 10 e alloy al	nt. - to 700°C 5,5 s, chemic - iso resist:	- . Commo - al and p - s hot me	on in the etrocher - tal on m	8,0 wood in nical valv 14 etal wea	rest dustry fo rest ves, forgi rest r. The de	3 or large b 4 ng dies e 4 posited v	shear blades, pumps for 20°C 45-47 HRC 300°C 37 HRC 600°C 32 HRC and saw blades, chain 30 HRC work hardening 45 HRC ttc. 250-280 HB weld metal with has an

drill bits and other mining applications.

WORK HARDENING ELECTRODES

18 8 Mn R 73 X 7-26 h recovery (160%). Fu t to weld materials, bu sistant to cracks. Repa els, etc. E Fe9 IM-250-KP Mn-A suitable to surface all before hardfacing in tance against cracks a and mines (crusher ja E Fe9	uffer layer air of: mar 0,9 pieces sul case of he and abrasi	o,6 bject to eavy rec	hardfacir steel bu 13 high imp laiming airing of	ng, repain Ickets an 3 Dact. Sor before a used pa	netimes pplying a rts or pro	ieces sul ls, high t - used ins abrasion eventive	ensile to - stead of i resistan	to shock ols and - 307 E fo t final la	r 13% M yers. The	o use, sc tches, cr - n-steel a e deposi	oft fusior ane whe - assembli t is auste	n, low spa eels, eart Rest ng (Had	Atters, easy hmoving As welded 200 HB After W-H: 400-500 HI field steels). d the addition
7-26 h recovery (160%). Fu t to weld materials, br sistant to cracks. Repa els, etc. E Fe9 IM-250-KP Mn-A suitable to surface all before hardfacing in tance against cracks a and mines (crusher ja	lly austen uffer layer air of: mar 0,9 pieces sul case of he und abrasi	0,6 bject to eavy rec	hless sten hardfacir steel bu 13 high imp laiming of	el depos ng, repain teckets an 3 pact. Sor before a used pa	it with a ring of p d shove 3,5 3,5 netimes pplying a rts or pro	ieces sul ls, high t - used ins abrasion eventive	ensile to - stead of i resistan	to shock ols and - 307 E fo t final la	r 13% M yers. The	o use, sc tches, cr - n-steel a e deposi	oft fusior ane whe - assembli t is auste	In-steels h, low speels, eart Rest ng (Hade	200 HB After W-H: 500 HB (14% Mn), atters, easy hmoving As welded 200 HB After W-H: 400-500 H field steels). d the additio
t to weld materials, bi sistant to cracks. Repa els, etc. E Fe9 IM-250-KP Mn-A suitable to surface all before hardfacing in tance against cracks a and mines (crusher ja	uffer layer air of: mar 0,9 pieces sul case of he and abrasi	o,6 bject to eavy rec	hardfacir steel bu 13 high imp laiming airing of	ng, repain Ickets an 3 Dact. Sor before a used pa	netimes pplying a rts or pro	ieces sul ls, high t - used ins abrasion eventive	ensile to - stead of i resistan	to shock ols and - 307 E fo t final la	r 13% M yers. The	o use, sc tches, cr - n-steel a e deposi	oft fusior ane whe - assembli t is auste	n, low spa eels, eart Rest ng (Had	Atters, easy hmoving As welded 200 HB After W-H: 400-500 H field steels). d the additio
IM-250-KP IMn-A suitable to surface all before hardfacing in tance against cracks a and mines (crusher ja	pieces sul case of he ind abrasi	bject to eavy rec	high imp laiming airing of	pact. Sor before a used pa	netimes pplying rts or pro	abrasion eventive	resistan	t final la	yers. The	e deposi	t is auste	ng (Had	200 HB After W-H 400-500 H field steels). d the additio
before hardfacing in tance against cracks a and mines (crusher ja	case of he ind abrasi	eavy rec ion. Repa	laiming airing of	before a used pa	pplying rts or pre	abrasion eventive	resistan	t final la	yers. The	e deposi	t is auste	enitic and	d the additio
IM-250-KPR	0,6	0,3	16	14	-	-	crusher). -		-	-	-	Rest	As welded 260 HB
MnCr													After W-H: 400-500 H
een Mn- and construc Repairing of used part	tion steels s or preve	s and as entive pr	a buffer rotectior	layer be	fore har	dfacing.	The high	amoun	t of Cr ir	ncreases	the resis	stance ag	gainst corro-
	0,1	1	0,6	29	9	0,5	-	-	-	-	-	Rest	As welded 240 HB After W-H 450 HB
F r 1	ode with high recovery reen Mn- and construct Repairing of used part r and grab teeth, mill h 9 R 32 12-16 with high alloy conten Preheat can often be a nilar composition or fer	ode with high recovery (140%), s reen Mn- and construction steel Repairing of used parts or prever r and grab teeth, mill hammers, 9 9 R 32 0,1 12-16 with high alloy content and hig Preheat can often be avoided o nilar composition or ferritic stain	ode with high recovery (140%), suitable reen Mn- and construction steels and as Repairing of used parts or preventive pr r and grab teeth, mill hammers, rock cru 9 9 R 32 0,1 12-16 with high alloy content and high ferrite Preheat can often be avoided or minimialiar composition or ferritic stainless steel	ode with high recovery (140%), suitable to surface oreen Mn- and construction steels and as a buffer Repairing of used parts or preventive protection r and grab teeth, mill hammers, rock crusher). 9 R 32 0,1 12-16 with high alloy content and high ferrite ratio where Preheat can often be avoided or minimized. The nilar composition or ferritic stainless steels. Jointin	ode with high recovery (140%), suitable to surface all pieren Mn- and construction steels and as a buffer layer be Repairing of used parts or preventive protection of new r and grab teeth, mill hammers, rock crusher). 9 9 R 32 0,1 1 0,6 29 12-16 0,1 1 0,6 29 with high alloy content and high ferrite ratio which allow Preheat can often be avoided or minimized. The weld de nilar composition or ferritic stainless steels. Joining stainl	ode with high recovery (140%), suitable to surface all pieces subjurgen Mn- and construction steels and as a buffer layer before har. Repairing of used parts or preventive protection of new parts in r and grab teeth, mill hammers, rock crusher). 9 9 R 32 0,1 1 0,6 29 9 12-16 0,1 1 0,6 29 9 with high alloy content and high ferrite ratio which allow it to be Preheat can often be avoided or minimized. The weld deposit we hilar composition or ferritic stainless steels. Joining stainless steels	ode with high recovery (140%), suitable to surface all pieces subject to high reen Mn- and construction steels and as a buffer layer before hardfacing. Repairing of used parts or preventive protection of new parts in railway at r and grab teeth, mill hammers, rock crusher). 9 9 R 32 0,1 1 0,6 29 9 0,5 12-16 0,1 1 0,6 29 9 0,5 with high alloy content and high ferrite ratio which allow it to benefit fro Preheat can often be avoided or minimized. The weld deposit workharden inlar composition or ferritic stainless steels. Joining stainless steels to mild	ode with high recovery (140%), suitable to surface all pieces subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject to high impartement of the subject is subject in the subject is subject in the subject is subject is subject in the subject in the subject is subject in the subject in the subject is subject in the subject in the subject is subject in the subject i	ode with high recovery (140%), suitable to surface all pieces subject to high impact and careen Mn- and construction steels and as a buffer layer before hardfacing. The high amoun Repairing of used parts or preventive protection of new parts in railway applications (rails r and grab teeth, mill hammers, rock crusher). 9 9 R 32 0,1 1 0,6 29 9 0,5 - 12-16 0,1 1 0,6 29 9 0,5 - - with high alloy content and high ferrite ratio which allow it to benefit from extreme toler. Preheat can often be avoided or minimized. The weld deposit workhardens and gives gouilar composition or ferritic stainless steels. Joining stainless steels to mild and low-alloyed	ode with high recovery (140%), suitable to surface all pieces subject to high impact and cavitation reen Mn- and construction steels and as a buffer layer before hardfacing. The high amount of Cr ir Repairing of used parts or preventive protection of new parts in railway applications (rails, switch r and grab teeth, mill hammers, rock crusher). 9 9 R 32 0,1 1 0,6 29 9 0,5 - - 12-16 0,1 1 0,6 29 9 0,5 - - with high alloy content and high ferrite ratio which allow it to benefit from extreme tolerance to I Preheat can often be avoided or minimized. The weld deposit workhardens and gives good wear nilar composition or ferritic stainless steels. Joining stainless steels to mild and low-alloyed steels.	ode with high recovery (140%), suitable to surface all pieces subject to high impact and cavitation in combreen Mn- and construction steels and as a buffer layer before hardfacing. The high amount of Cr increases Repairing of used parts or preventive protection of new parts in railway applications (rails, switches, cross r and grab teeth, mill hammers, rock crusher). 99 R 32 0,1 1 0,6 29 9 0,5 - - - 12-16 0,1 1 0,6 29 9 0,5 - - - with high alloy content and high ferrite ratio which allow it to benefit from extreme tolerance to hot cract Preheat can often be avoided or minimized. The weld deposit workhardens and gives good wear and frictual ratio composition or ferritic stainless steels. Joining stainless steels to mild and low-alloyed steels. Buffer la	ode with high recovery (140%), suitable to surface all pieces subject to high impact and cavitation in combination reen Mn- and construction steels and as a buffer layer before hardfacing. The high amount of Cr increases the resis Repairing of used parts or preventive protection of new parts in railway applications (rails, switches, crossings, tor r and grab teeth, mill hammers, rock crusher). 9 P 32 0,1 1 0,6 29 9 0,5 - - - 12-16 0,1 1 0,6 29 9 0,5 - - - with high alloy content and high ferrite ratio which allow it to benefit from extreme tolerance to hot cracking and Preheat can often be avoided or minimized. The weld deposit workhardens and gives good wear and friction resistilar composition or ferritic stainless steels. Joining stainless steels to mild and low-alloyed steels. Buffer layers befor	ode with high recovery (140%), suitable to surface all pieces subject to high impact and cavitation in combination with correen Mn- and construction steels and as a buffer layer before hardfacing. The high amount of Cr increases the resistance agree and grab teeth, mill hammers, rock crusher). 9 9 R 32 0,1 1 0,6 29 9 0,5 - - - Rest

IMPACT RESISTANT ELECTRODES Meltelit

RODUCT	CLASSIFICATION				<u> </u>		CAL CON							
		С	SI	MN	CR	NI	MO	TI	V	W	NB	CO	FE	HARDNESS
7130 E	DIN EN 14700: E Fe1 DIN 8555 E1-UM-300	0,1	0,8	0,5	3,4	-	-	-	-	-	-	-	Rest	28-33 HR0
	E is used for surfacing and rebuilding p ling shaft ends, rail tracks etc.	arts subje	ected to	high im	pact and	l high co	mpressi	ve stress	ses. Trac	k pads a	nd rollei	rs, moul	ds, dies,	gear teeth,
7100 E	DIN EN 14700: E Fe1 DIN 8555 E1-UM-400	0,3	0,5	1	1,5	-	-	-	-	-	-	-	Rest	35-42 HR0
	electrode for surfacing of machine and ectrodes are easy to weld even on small													
7135 E	DIN EN 14700: E Fe3 DIN 8555 E3-UM-40-PT	0,15	0,5	0,7	6,5	-	3,5	-	-	-	-	-	Rest	38-42 HR0
	electrode for surfacing of machine and ear at elevated temperatures up to 550°						de of low	alloyed	and cas	t steels	which a	re mainl	y stresse	d by pressur
7140 E	DIN EN 14700: E Fe3 DIN 8555 E3-UM-50-T	0,3	0,5	0,6	5,2	-	4	-	-	-	-	-	Rest	45-50 HR0
ind heat resi	E is used for surfacing and rebuilding p stance. Therefore the electrode is used f up to 550° C. It is widely used for buildi	or overlay	/ and bu	ilds up c	of machi	ne parts	and too	ls subjeo	ct to imp		-			-
7160 E	DIN EN 14700: E Fe2 DIN 8555 E10-UM-60	1,0	0,5	1,3	4,5	-	-	-	-	-	-	-	Rest	55-60 HR
	- e-basic electrode used for hardsurfacing blades, chutes, pump housings, convey													lades, crush
7110 E	DIN EN 14700: E Fe8 DIN 8555 E6-UM-60-5	0,4	1	1	9	-	1	-	1	-	-	-	Rest	58 HRC
C-steel, cast s aws, wheel ri	oated general purpose hardfacing elect teel and Manganese steel. The deposit i ms, rollers, caterpillar tracks, ploughsha	s tough-ł res, runni	hard and ing surfa	crack re ces, cut	sistant. l ting edg	Recover	y of the o		e appro:	x. 120%.		-	lock pre	sses, crushe
7150 E	DIN EN 14700: E Fe4 DIN 8555 E1-UM-60-ST	0,8	0,5	0,5	5	-	10	-	1,5	1,5	-	-	Rest	60-63 HR
/lo-W marter	oated electrode destined to surface all l nsitic deposit, resistant up to 500°C. This ition only machinable by grinding. Hard	electrod	e is also	used for	surfacir	ng of pie	ces subj	ect to m	etal/me	tal wear	. Withsta	nds mo		
7150Co E	DIN EN 14700: E Z Fe3 DIN 8555: E3-UM-50-CRTZ	0,15	0,6	0,6	14	-	2,3	-	-	-	-	13	Rest	As welde 45-50 HR After W-H 55 HRC
ect to impac	oated electrode resistsant to metal agai t, compression and wear at operating te Dies, hot working tools, moulds, continu	mperatu	res up to	o 650° C.	The dep	osit is re	sistant t							
WZ 50 AC	EN 14700 : E Z Fe3 DIN 8555: E 3-UM-50-T	0,3	-	-	2,2	-	-	-	0,6	4,2	-	-	Rest	As welde 47 HRC After H-T: 48-52 HR
	high-quality electrode with approx. 12 nade of low alloyed high density steels.		,		5			. 5		5			, ,	5
		0,9	1		4,5	-	8,5	2	1,5	2	-	1	Rest	59-62 HR

ABRASION RESISTANT ELECTRODES

PRODUCT	CLASSIFICATION					CHEMIC	CAL CON	IPOSITIC)N (%)					
				MN	CR		MO	TI			NB	CO	FE	HARDNESS
71160 E	DIN EN 14700 Fe14	3,3	1,0	0,5	29	-	-	-	-	-	-	-	Rest	58-60 HRC
	DIN 8555 E10-UM-60-GRPZ													
ompression	l ile coated hardfacing electrode with hi . Austenitic matrix containing Cr-carbic surface, self releasing slag. Surfacing in	les. The de	eposit re	sists to c	corrosior	n due to	the high	chromi	um cont	ent as w	ell as he	at up to	200°C. E	asy flow,
	by grinding. For excavating and crashin allations for minerals, concrete pumps,									ies for a	brasive ı	material	s, excava	tor teeth,
600 HRT	DIN EN 14700 Fe15	5	-	0,5	35	-	-	-	-	-	-	-	Rest	58-62 HR0
	t. To consume with very low current. Ag the arc (double the recommended curr DIN EN 14700 Fe15 DIN 8555 E10-UM-65-GR										•			
It is used wh transfer and ments, screv	n electrode for hardfacing especially fo nere ever abrasive wear is extremely hig only negligible slag content. Recovery w conveyers, valves, exhaust fans, agita n temperatures up to 450°C.	h becaus approx. 1	e it offer 90%. The	s an exco e resulti	ellent re ng depo	sistance sits canr	against a not be he	abrasion eat treat	. The ele ed, macl	ctrode i nined or	s easy to forged.	weld, h Ash plo	as a smo ws, coke	ooth drop crusher seg·
7180 E	DIN EN 14700 Fe16 DIN 8555 E10-UM-65-GRZ	5	1,5	-	22	-	7	-	1	2	7	-	Rest	65 HRC
carbides. 718	ed especially with extreme abrasive we to be sugged where extreme abrasive we ble slag content Recovery approx. 200%	ar is expe	cted eve	n at elev	vated ter	nperatu	res up to	600°C.	Neldabil	ity is ex	cellent, ł	nas a sm	ooth dro	p transfer

TUNGSTEN CARBIDES ELECTRODES

PRODUCT											
			HARDNESS								
DURMAT E	DIN EN 14700 E Fe20	Fe-based with FTC	FTC: 2,360 HV								
	DIN 8555 E21-GF-UM-60-CG	Tube 3,5-8,0mm	Weld metal: 55-58 HRC								
current trouble free 0.5%. Higher carbo	Tube electrode filled with medium sized fused tungsten carbides developed for manual welding application. This electrode can be applied by alternating or direct current trouble free once the proper machine setting is obtained. For hard facing on machine parts of unalloyed or low alloyed steel with carbon content up to 0.5%. Higher carbon content could lead to cracking. For hard facing and repairing tools and machine parts exposed to wear in mining, road construction, ceramic, petroleum, excavation and dredging applications.										
DURMAT NISE	DIN EN 14700 E Ni20	Ni-matrix with FTC	FTC: approx. 2,360 HV								
	DIN 8555 E21-GF-UM-60-CGZ	Rod 4,0-8,0mm	NiCrBSi-alloy: 480-520 HV								
extreme abrasion i DURMAT NISE is sp	n combination with corrosion is experience of the second	bide and a special nickel alloy for manual welding. This alloy is specially designe cted. NISE can be applied on steel castings, nickel based and stainless steel alloy exposed to corrosive media and excessive wear conditions. The matrix is highly and austenitic steels (steel castings), stabilizer blades, conveyor screws, milling	ys. The alloy combination of resistant to acids, lye's and								

COBALT BASE ELECTRODES

elt#lit

PRODUCT	CLASSIFICATION	С	SI	MN	CHEMIC	CAL COM	POSITIO MO	N (%) AL	v	W	CO	FE	HARDNESS
Co1 E	EN 14700 T Co3 AWS A5.21 ERCCoCr-C	2,3	1	1	29	-	-	-	-	12	rest	4	20°C 55 HRC 600°C 44 HRC 800°C 34 HRC
	oosit of all standard cobalt alloys, e es over 760°C. Pump sleaves, trans				rosion, re	ducing a	acids, imp	pact, ext	reme we	ar and te	empeartu	ire shock	s. Retains hardness at
Co6 E	DIN 8555 E20-UM-45-CRTZ EN 14700 T Co2 AWS A5.21 ERCCoCr-A	1,1	1	1	29	-	-	-	-	4,5	rest	4	20°C 40-43 HRC 300°C 35 HRC 600°C 29 HRC
	ble and widely used alloy due to o rature liquids, paper and pulp app	•		ce. Retaiı	ns hardn	ess at ter	nperatu	res up to	500°C. S	team an	d chemic	al valves	s, shear blades, pumps fo
Co6 HR	DIN 8555 E20-UM-45-CRTZ EN 14700 T Co2 AWS A5.21 ERCCoCr-A	0,9	1	1	29	-	-	-	-	4,5	rest	4	20°C 40-43 HRC 300°C 35 HRC 600°C 29 HRC
	ry electrode (160%). Mostly flexib r blades, pumps for high temperat					•	ormance	e. Retains	s hardne	ss at tem	perature	s up to 5	i00°C. Steam and chemic
Co12 E	EN 14700 T Co2 AWS A5.21 ERCoCr-B	1,6	1	1,5	29	-	-	-	-	8,0	rest	3	20°C 45-47 HRC 300°C 37 HRC 600°C 32 HRC
High resista	ance to corrosion and galling at el	evated te	emperati	ures. Ret	ains harc	Iness up	to 700°C	. Commo	on in the	wood in	dustry fo	or large b	and saw blades, chain
Co21 E	EN 14700 T Co1 AWS A5.21 ERCCoCr-E	0,25	1	1	28,5	3	5,5	-	-	-	rest	4	As welded: 30 HRC After W-H: 45 HRC
High corro	sion and thermal resistance. The a	lloy is ma	chinable	e. Steam	valves, h	ot shear	s, chemio	cal and p	etrocher	nical val	ves, forgi	ng dies e	etc.
Co21 HR	EN 14700 T Co1 AWS A5.21 ERCCoCr-E	0,25	1	1	28,5	3	5,5	-	-	-	rest	4	As welded: 30 HRC After W-H: 45 HRC
0	sion and thermal resistance. The a ery electrode.	lloy is ma	chinable	e. Steam	valves, h	ot shear	s, chemio	cal and p	etrocher	nical val	ves, forgi	ng dies e	etc.
Co25 E	EN 14700 T Co1 DIN 8555 E20-UM-250-CKTZ	0,15	1	1,5	20	10	-	-	-	14	rest	4	250-280 HB
	l I thermal fatigue resistance and u th, good oxidation resistance up t												ı weld meta has an excel

WEAR RESISTANCE

Alloy	Metal/metal sliding wear	Impact	Erosion	Corrosion	Abrasion(cold)	Abrasion(hot)
Co1	+++	-	+++	+++	+++	+++
Co6	+++	+++	+++	+++	++	++
Co12	+++	++	+++	+++	+++	+++
Co21	+++	+++	+++	+++	+	+
Co25	+++	+++	+++	+++	++	++

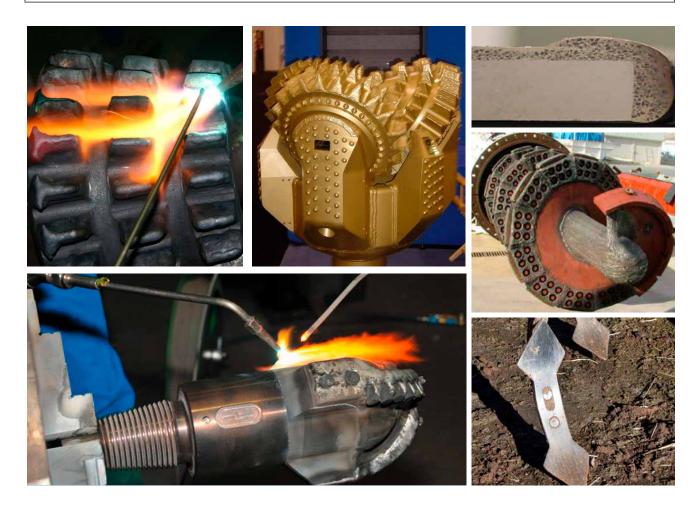
NICKEL BASE ALLOYS ELECTRODES

	CLASSIFICATION			MN	CR		MO	AL	0N (%) CO		NB		CU	FE	HARDNESS
55 XE	AWS A 5.15: E NiFe-Cl ISO 1071: E C NiFe-1 3	1,1	1,2	0,8	-	53	-	-	-	-	-	-	4	Rest	200 HB
	electrode with graphite-basi Iding caracteristics. Foundry	-								•					
61 XE	AWS A 5.15: E Ni-Cl ISO 1071: E C Ni-Cl 3	<1	<1,2	-	-	Rest	-	-	-	-	-	-	-	<2	180 HB
and can be u	t consists of pure nickel. Rec used as buffer strings before d corrosion resistance, partic	using a N	liFe wire.		-					-		-			
60 XE	AWS A 5.11: ER NiCu-7 ISO 14172: E-Ni 4060 (NiCu30Mn3Ti)	0,03	0,7	3,2	-	Rest	-	-	-	-	-	0,5	29	1,2	-
	opper alloyed electrode for v o for above grades against ca			facing co	pper-nic	kel alloy:	s and co	oper-nicl	kel plate	d steels s	uch as N	lonel 40	0, CuNi 9	10/10, Cu	Ni 70/30 and
82 XE	AWS A 5.11: ER NiCrFe-3 ISO 14172: S-Ni 6182 (NiCr15Fe6Mn)	0,03	0,2	3,2	20,5	Rest	-	-	-	-	-	0,3	2,3	2	-
NiCr-alloved	electrode for welding of hig and cast iron. Used in cryoge										ar joining	g of low a	alloyed s	teel, stai	nless steel,
	and case non. Osed in cryoge							r				1			1
-	AWS A 5.11: ER NiCrMo-3 ISO 14172: E-Ni 6625 (NiCr22Mo9Nb)	0,04	0,4	0,6	22	Rest	9	-	-	-	3,4	-	-	3	-
nickel steel a 625 XE Used for hig For welding	AWS A 5.11: ER NiCrMo-3 ISO 14172: E-Ni 6625	0,04 structura 25-6MO, a	l stability and a wie	y, resistan de range	nce to ge of high a	eneral co alloy aus	rrosion, j tenitic ai	-			corrosio		-	ere chlor	
625 XE Used for hig	AWS A 5.11: ER NiCrMo-3 ISO 14172: E-Ni 6625 (NiCr22Mo9Nb) h temperature strength and of alloy 625, alloy 825, alloy 2 Ni steels, and for welding var AWS A 5.11: ER NiCrMo-4 ISO 14172: E-Ni 6276	0,04 structura 25-6MO, a	l stability and a wie	y, resistan de range	nce to ge of high a	eneral co alloy aus	rrosion, j tenitic ai	-			corrosio		-	ere chlor	
nickel steel a 625 XE Used for hig For welding welding 9% C-276 XE Nickel alloyee	AWS A 5.11: ER NiCrMo-3 ISO 14172: E-Ni 6625 (NiCr22Mo9Nb) h temperature strength and of alloy 625, alloy 825, alloy 2 Ni steels, and for welding van AWS A 5.11: ER NiCrMo-4 ISO 14172: E-Ni 6276 (NiCr15Mo15Fe6W4) ed electrode for welding of h	0,04 structura 25-6MO, r rious corr 0,02	I stability and a wie rosion-re 0,2	y, resistan de range sistant a 0,6	nce to ge of high a lloys sucl 16,2	eneral con alloy aust h as alloy Rest	rrosion, j tenitic ar 20.	nd super	austenit	ic stainle	corrosion ess steels	. It is also	o used fo	ere chlor or surfacio	ng of steel, f
nickel steel a 625 XE Used for hig For welding welding 9% C-276 XE Nickel alloyee	AWS A 5.11: ER NiCrMo-3 ISO 14172: E-Ni 6625 (NiCr22Mo9Nb) h temperature strength and of alloy 625, alloy 825, alloy 2 Ni steels, and for welding van AWS A 5.11: ER NiCrMo-4 ISO 14172: E-Ni 6276 (NiCr15Mo15Fe6W4)	0,04 structura 25-6MO, r rious corr 0,02	I stability and a wie rosion-re 0,2	y, resistan de range sistant a 0,6	nce to ge of high a lloys sucl 16,2	eneral con alloy aust h as alloy Rest	rrosion, j tenitic ar 20.	nd super	austenit	ic stainle	corrosion ess steels	. It is also	o used fo	ere chlor or surfacio	ng of steel, f
nickel steel a 625 XE Used for hig For welding welding 9% C-276 XE Nickel alloyee 59 XE Nickel alloyee	AWS A 5.11: ER NiCrMo-3 ISO 14172: E-Ni 6625 (NiCr22Mo9Nb) h temperature strength and of alloy 625, alloy 825, alloy 2 Ni steels, and for welding van AWS A 5.11: ER NiCrMo-4 ISO 14172: E-Ni 6276 (NiCr15Mo15Fe6W4) ed electrode for welding of h emical industry and piping. AWS A 5.11: ER NiCr- Mo-13 ISO 14172: E-Ni 6059	0,04 structura 25-6MO, i rious corri 0,02 igh nicke 0,01	I stability and a wie rosion-re 0,2 I content 0,2 -276, 62:	y, resistai de range sistant a 0,6 t alloys si 0,5 5, Incolog	nce to ge of high a lloys sucl 16,2 uch as Ha 22,5 y 800 and	eneral co alloy aus h as alloy Rest astelloy C Rest d 825 or o	rrosion, j tenitic ar / 20. 16 C-276, Ni 16,2 0ther nic	Mo16Cr1	- - 5W. Exco - -	4 ellent res at lower	istance t	. It is also - to chloric - ature. Als	des, acid 0,15 so used f	ere chlor r surfaciu 5 s and cou 1,2 or joinin	ng of steel, f
nickel steel a 625 XE Used for hig For welding welding 9% C-276 XE Nickel alloyee ment for che 59 XE	AWS A 5.11: ER NiCrMo-3 ISO 14172: E-Ni 6625 (NiCr22Mo9Nb) h temperature strength and of alloy 625, alloy 825, alloy 2 Ni steels, and for welding var AWS A 5.11: ER NiCrMo-4 ISO 14172: E-Ni 6276 (NiCr15Mo15Fe6W4) ed electrode for welding of h emical industry and piping. AWS A 5.11: ER NiCr- Mo-13 ISO 14172: E-Ni 6059 (NiCr23Mo16) ed electrode for welding of A	0,04 structura 25-6MO, i rious corri 0,02 igh nicke 0,01	I stability and a wie rosion-re 0,2 I content 0,2 -276, 62:	y, resistai de range sistant a 0,6 t alloys si 0,5 5, Incolog	nce to ge of high a lloys sucl 16,2 uch as Ha 22,5 y 800 and	eneral co alloy aus h as alloy Rest astelloy C Rest d 825 or o	rrosion, j tenitic ar / 20. 16 C-276, Ni 16,2 0ther nic	Mo16Cr1	- - 5W. Exco - -	4 ellent res at lower	istance t	. It is also - to chloric - ature. Als	des, acid 0,15 so used f	ere chlor r surfaciu 5 s and cou 1,2 or joinin	ng of steel, f - rrosion. Equi
Anickel steel a 625 XE Jsed for hig For welding 9% C-276 XE Nickel alloye ment for cher 59 XE Nickel alloye duplex and s 7170 E Rutile-basic resistant to	AWS A 5.11: ER NiCrMo-3 ISO 14172: E-Ni 6625 (NiCr22Mo9Nb) h temperature strength and of alloy 625, alloy 825, alloy 2 Ni steels, and for welding var AWS A 5.11: ER NiCrMo-4 ISO 14172: E-Ni 6276 (NiCr15Mo15Fe6W4) ed electrode for welding of h emical industry and piping. AWS A 5.11: ER NiCr- Mo-13 ISO 14172: E-Ni 6059 (NiCr23Mo16) ed electrode for welding of A super-duplex steels. Often us DIN EN 14700: ENi2 AWS A 5.11: ENiCrMo-5 DIN 8555: E23-UM-250-	0,04 structura 25-6MO, r rious corr 0,02 igh nicke 0,01 lloy 59, C sed in off: <0,1 with 170 dation. D	I stability and a wie rosion-re 0,2 I content 0,2 -276, 62! shore inc 0,5 % recove	y, resistant de range sistant a 0,6 t alloys su 0,5 5, Incolog dustry, bu 0,8 ery and a rork-hard	y 800 and poilers, col deposit lens unde	eneral con alloy ausis h as alloy Rest astelloy C Rest d 825 or o ntainers Rest Rest composi er impac	rrosion, p tenitic ar y 20. 16 C-276, Ni 16,2 other nic and pipe 16 ition of a t and is r	Mo16Cr ¹ Mo16Cr ¹ kel alloy systems lloy C (N nachinal		ellent res at lower ical and 4 with out used for	corrosion ss steels istance t tempera petro -cl	. It is also	des, acid 0,15 0,15 so used f industry - g charact	ere chlor r surfacii 5 s and cor 1,2 7 or joinin 5,5 teristics. rmal sho	ng of steel, f - rosion. Equi - g of austeni 250 HB After W-H 400 HB Deposit is cks. Surfacir

COPPER ALLOYS ELECTRODES

PRODUCT	CLASSIFICATION			C	HEMICAL CO	OMPOSITION	1 (%)			
		CU	AL	SN	MN			FE		HARDNESS
CuSn7	DIN 1733: EL-CuSn7 AWS A5.6: E CuSn-C	Rest	-	7	0,9	-	0,1	0,15	-	110 HB
Used for build	-up and join welding on CuSn allo	ys, CuSnZnP	b cast alloys	and cast iro	n.					
CuSn12	DIN 1733: EL-CuSn12 AWS A5.6: E CuSn-A	Rest	-	12	0,9	-	0,1	0,15	- +Si 3	120 HB
	I welding processes. The weld met ding and repairs on bronzes.	al achieves h	high hardnes	s correspon	ding to a cas	st bronze, so	it's used for	particularly	wear-resista	nt coatings as well
CuAl8	DIN 1733: EL-CuAl9 AWS A5.6: E Al-A2	Rest	8	-	1	-	-	0,7	-	180 HB
	elding and hardfacing aluminium xcellent weldability, stable arc and				, ,				ting is recom	nmended for large
MX 300 (CuMn13Al)	DIN 1733: EL-CuMn14Al AWS A5.6: E CuMnNiAl	Rest	6	-	12	2,2	-	2,2	-	200 HB
	gh-strength welding wire, also spa onzes. Especially for ship propellers	•				on. Resistant	to cavitatior	n and erosio	n. Buildup ar	nd join welding on
CuNi30	DIN 1733: EL-CuNi30Mn AWS A5.6: E CCuNi	Rest	-	-	1,2	30	-	0,5	0,2	115 HB
	suited for highly stressed, corrosio ed for welding on CuNi materials.		•				low-alloy ste	els, as well a	s seawater-r	esistant CuZn

SPECIAL APPLICATION ELECTRODES


PRODUCT	CLASSIFICATION				CHEMIC	AL COM	POSITIO	N (%)					
		С	SI	MN	CR	NI	MO	NB	CU	RM (MPA)	RP 0,2 (MPA)	A5 (%)	IMPACT
2535 E	EN ISO 3581-A: EZ 25 35 Nb B 22	0,4	1	2	24,5	35	-	1,3	-	-	-	-	-
	l electrode for joint welding and re carbonising, oxidising and reducir						nigh alloy	/ed steel	s and ca	st steels. The c	leposit is heat p	roof up to	1150°C and
2133 E	EN ISO 3581-A: EZ 22 33 Nb B 22 (alloy 800)	0,15	0,6	1,6	21	33	-	1,2	-	600	380	25	+20°C 45J
	l electrode for joint welding corro , oxidising and reducing gases. Pe				J /	ed steels	and cast	steels. T	he depo	sit is heat pro	of up to 1050°C	and resist	ant to
383 E	AWS A5.4: E383-16 ISO 3581-A: E 27 31 4 Cu L R 12	0,03	0,8	1,4	27	31	-	-	1	>580	>380	>35	+20°C >70J
Special stair	less alloy for welding of Cu-alloye	d stainle	ss steels.	resistan	ce to pit	iing and	stress co	orrosion	in acid a	nd alkaline en	vironments.		
385 E (904L)	AWS A5.4: E385-16 ISO 3581-A: E 20 25 5 Cu N L R 12	0,03	0,8	1,4	20,5	25	4,5	-	1,5	>570	>370	>35	+20°C >70J
alloy and ot	fully austenitic stainless electrode her stainless steels. Very good resi 39 etc. Typical applications: Tanks,	stance to	heat cra	acking, ir	ntercrysta	alline cor	rosion a	nd acids.	lt is an a	lternative cho	ice to overmatc	h leaner a	

TUNGSTEN CARBIDES OXY-ACETYLENE

PRODUCT	CLASSIFICATION	CHEMICAL COMPOSITION (%)	
			HARDNESS
A (WC60)	DIN EN 14700 T Fe20	Fe-based with FTC	FTC: 2,360 HV
	DIN 8555 G21-GF-55-CG	Tube 3,5-8,0mm	Weld metal: 55 HRC
of over 2360 HV0.1 carbon content up diameter and grain	giving outstanding wear protection t to 0.45%. Higher carbon content coul size should be chosen. If the area wil	grained Fused Tungsten Carbide (FTC) for oxyacetylene welding. The FTC has a o hard faced areas. For special hard facing on machine parts of unalloyed, low a ld lead to cracking. Depending on the size and composition of the area to be ha l encounter heavy abrasion a small grain size is recommended. If a cutting action machine parts exposed to wear in mining, road construction, ceramic, petrole	alloyed or cast steel with ard faced, the proper rod on is desired a larger grain
B (WC75)	DIN EN 14700 T Ni20	NiCrBSi-based with FTC	FTC: approx. 2,360 HV
	DIN 8555 G21-UM-55-CG	Rod 4,0-8,0mm	NiCrBSi-alloy: 420-450 HV
approximately 65% excessive wear cor clean welded surfa	% FTC and 35% Ni-Cr-B-Si-matrix with a nditions. The rod has a low melting ran nce. Hard facing of ferritic and austenit	I tungsten carbide (FTC) and Ni-Cr-B-Si developed for oxyacetylene welding. Th a matrix hardness of 45 HRC. The overlay is highly resistant to acids, bases, lye a ige of between 950 - 1050°C (1,742-1,922°F) and feature a self fluxing character ic steels (steel castings), applied for overlaying mixer blades, screws and conve- ilizer blades in the petroleum industry.	nd other corrosive media and ristic producing a smooth,

NIA	DIN EN 14700 T Fe20	NiCrBSi-based with FTC	FTC: approx. 2360 HV0.1
	DIN 8555 MF21-65-CG	Tube 2,8-6,0mm	NiCrBSi-alloy: 450 - 520 HV

NIA is a cold rolled, formed, and closed seam nickel tube filled with fused tungsten carbide (FTC) and Cr, B and Si for oxyacetylene application. The deposited hard facing consists of approximately 65% FTC and 35% Ni-Cr-B-Si-matrix. NIA feature self fluxing characteristic producing a smooth, clean surface. DURMAT–NIA has a low melting point of approx. 950 – 1050°C (1,742-1,922°F). The overlay is extremely wear resistance and anti corrosive to acids, bases, lye and other corrosive media. Hard facing on ferritic and austenitic steels (steel castings), overlaying mixer blades and conveyor and screws in chemical, dye and food industry. Recommended for hard facing rock bits and stabilizers in the petroleum industry.

WEAR PLATES

		THICKNESS	SIZE	HARDNESS
X 700	EN 14700: Fe14 (group 10)	Base plate: 5-10mm Hardfacing: 3-8mm (Others on request)	3000x1500mm, 3000x2000mm (Special dimensions on demand)	58-62 HRC
•	chromium carbides for high abrasive v 235, S355, S690QL (others on request)	vear with moderate impact. Typical appl	ications: Ceramic industry, crushed min	erals, mining, concrete etc
X 700Nb	EN 14700: Fe15 (group 10)	Base plate: 5-10mm Hardfacing: 3-8mm (Others on request)	3000x1500mm, 3000x2000mm (Special dimensions on demand)	60-62 HRC
pumps, ceramic	chromium and niobium carbides for h industry, crushed minarl, mining, recy 235, S355, S690QL (others on request)	igh abrasive wear in combination with c cling etc	orrosion and low impact. Typical applica	ations: Cement and concret
X 700WC	EN 14700: Fe16 (group 10)	Base plate: 5-10mm Hardfacing: 3-8mm (Others on request)	3000x1500mm, 3000x2000mm (Special dimensions on demand)	62-64 HRC
Steel industry, fa	chromium, Niobium, tungsten and oth In blades for hot gas, castings, petroch 235, S355, S690QL (others on request)	ner complex carbides for extreme abrasi emical industries etc	ve wear at elevated temperatures up to	650°C. Typical applications:
X 900	-	Base plate: 2-3mm Hardfacing: 2-3mm (Others on request)	2000x1000mm (Special dimensions on demand)	65-68 HRC
	ced plate with overall thickness less th	an 5mm. Ideally suited for areas of high		asily formable, despite its v
		able for wear protection of moving part	slike fan blades etc.	

Base material (mm)	Coating (mm)	Total (mm)	Weight (kg/m²)
5	3	8	62
6	4	10	78
6	6	12	92
8	5	13	100
8	8	16	125
10	8	18	140

SPECIAL APPLICATIONS

CERAMIC WEAR TUBES

Wear tubes are used in a wide variety of abrasive pneumatic transport systems. Conveying fly ash, waste materials, animal bones, cement, coal dust, glass particles and abrasive flue gas are examples of applications that create a high degree of wear in your pipe bends. In such applications ceramic wear tubes has shown multiple extended lifetimes compared to alternative solutions like welded tubes. Even up against alternative wear materials like Densit, hardened steel, Basalt and hard faced solutions, lined pipes has shown significant longer lifetime.

Besides the excellent wear resistance of ceramic wear tubes the inside surface is also very smooth. This means better flow and less material build up in your conveying system. The inside ceramic surface of the pipes has a very hard and homogeneuos structure. Therefore the surface will remain smooth and get even smoother during abrasive operation.

Wear tubes minimize maintenance costs and unplanned stops due to pipe leakage in pneumatic transport systems. With a competitive price level the wear tubes represent solutions with great economic advantage.

The wear tubes are delivered as 3-6mm steel pipe with inner pipe of 10mm ceramic. Complete leghts of 500-1000mm with flenges in both ends for easy assembly. Inner dimensions between 65-150mm.

FEROBIDE

Weldable tungsten carbide composite material, which combines high levels of wear resistance with the ease and reliability of a weldable material. The unique features of FEROBIDE closes the gap between conventional tungsten carbide which requires brazing and weldable materials which have a significant lower wear performance.

FEROBIDE is ideal in situations where brazing is not an option and for applications involving sliding wear. It has found its use in critical applications in several different industries such as agriculture, separation, mining, mixing, mineral processing and road maintenance. The material is available in a range of standard tile sizes with custom designs available upon request.

WELD ON TILES

Ceramic tiles for extreme sliding and abrasive wear without impact. Cones for abrasive materials, conveyors, transport systems etc. These ceramic tiles are to be welded with a washer on a steel plate and then plugged with a ceramic button.

PRODUCT GUIDES

elt*lit

ELEMENTS GUIDE IN HARDFACING

ELEMEN	NT DESCRIPTION	HARDNESSES & CARBIDES	PERFORMANCE AT TEMPERATURE	RESISTANCE TO SHOCKS	DUCTILITY	CORROSION
C	Carbon is the principal hardening and strengthening element in iron-based alloys. It can combine with other elements to form carbides (hard phases). The alloys' strength and hardening capability improves as the carbon content increases, whilst elongation and weldability and machinability decrease.	++++	++			
Cr	Chromium improves heat resistance. Steels require a minimum chromium content of around 13% to render them corrosion resistant. Higher Cr contents improve corrosion and heat resistance. Chromium tends to reduce thermal conductivity. Chromium is a generator of carbides which has the effect of improving resistance to wear.	++++	++			++++
Мо	Molybdenum belongs to the category of elements that increase strength and resistance to corrosion and is therefore often used in Cr-Ni austenitic steels.	++	+++	++	-	++
Nb	Niobium is a powerful generator of hard carbides. This element can also be used as a stabiliser in refractory austenitic steels.	++++	+++	+		+
v	Vanadium is a generator of carbides and is used to re- duce sensitivity to overheating. Therefore, this element is often found in high speed hot working steels.	+++	++	-		
w	Tungsten is a powerful generator of very hard carbides. This element increases the resistance to high temperatures and is therefore used for tool steel applications.	++++	++++			
Ti	Titanium combines easily with other elements such as oxygen (deoxidising effect) and carbon. Titanium carbide forms fine particles, providing good resistance to external shocks.	+++		+++	-	+
Mn	Manganese plays an important role by deoxidizing and desulphurising weld metal. Where there is over 12% manganese with a high carbon content, the de- posit is austenitic, thus providing excellent resistance to shock and wear due to workhardening. Over 18% Manganese, the deposit becomes non-magnetic.			+++	+++	
Ni	Nickel is not a carbide former. It substantially improves impact strength in construction steels. Where its con- tent exceeds 7% and there is a high chromium content, the structure becomes austenitic.		++	++	++	+
Co	Cobalt promotes heat resistance by slowing grain growth. In addition, it provides excellent resistance to corrosion and erosion.	++	++++	++	++	++++

PRODUCT GUIDES

CAST IRON WELDING

Cast iron normally contains a high carbon level of 2-4,5% which is almost up to 10 times the amount in normal steels. The higher carbon content lowers the melting temperature of the steel lead to less shrinking when the melted material is solidified. It also makes the process less expensive.

However this high carbon content also causes difficulties with the weldability of the material, its not impossible but there are a number of parameters you need to consider when repairing och joining different cast irons.

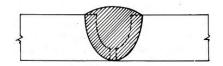
Below are the most common types of cast iron and all is considered weldable except white cast iron that require specific measures

Grey cast iron (gråjärn):

.

- Most common, is used in 70% of all applications. Low ductility.
- White cast iron (vitjärn): High hardness & wear resistance used in special wear applications but difficult to weld
- Nodular cast iron (segjärn) : Higher ductility and tensile strenght than grey cast iron
- Malleable cast iron (aducergods): Similar properties as nodular cast iron
- · Compact cast iron (kompaktjärn): Lower weight than grey cast iron and with higher properties

When welding cast iron its most important to remove all impurities before making your repair. Its very easy to get pores in the weld metal if you have oil, rust or scaling left on your part. On old worn cast iron its common that the porosity and graphite in the base metal is contaminated with these impurities and in some cases you may have to weld and then remove the weld metal many times before achieving a pore free weld deposit.


Repair weld of cracks

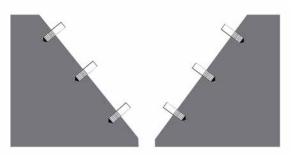
1. Stabilize the crack. This is achieved by either drilling a small hole in each end of the crack or weld a half moon beed in each end. Both ways will make sure the cracking does not grow further.

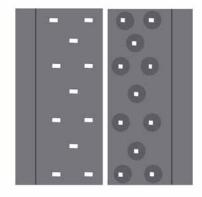
2. Joint preparation. You can either use a bevelling/chamfering electrode or a rotating metallic file to make a nice U-joint without sharp edges. The chamfering electrodes will also remove impurities in the base metal and give a natural U-joint. Cutting discs are not recommended because they smear out the graphite and makes the surfaces dirty again.

3. Most welding is recommended to weld without preheating, but thick work pieces or difficult shapes with high tendency of cracking may need a preheating with 500-600°C. If you preheat the best way is to heat the complete part in an oven with slow heating, constant temperature during welding and slow after cooling.

4. Use a proper filler metal with high ductility that is not sensitive to the high carbon content in the base metal. Then the filler metal will take much of the residual stress away. Pure nickel or Ferro-nickel is recommended. (See below chart for the recommended products) Often pure nickel 99% is used for root passes and where you need to have an easy machinable deposit and a ferro-nickel with higher properties are then used for the last beads to give a stronger joint or when joining cast iron to steel.

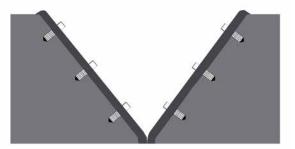
5. Minimize heat input. Make short welds, not more than 2-3cm and use low amperage. Then let it cool down and weld from the other side of the crack. After welding you use peening to relief the joint from tension stress. When the work piece is cool enough for you to place your hand on top of it you can weld again. Dont be in a hurry here! Welding direction should be from the weld to keep the heat input low.




Stud-welding

A good method to use when you have major breaks in large castings is to strenghten it with stud-welding. You drill holes that you thread and fill with studs or with bolts where you cut of the bolt head after threading. The stud should be long enough to have at least the depth of the stud diameter below the surface and the same above the surface. You then weld around the studs with low heat input and without pre-heating. You use a Ferro-nickel filler metal for this application. The surface is then built up with beads between the studs and according to the procedure described in the previous page until the surface is covered with welding deposit. The following welding will now be much easier and less sensitive to heat input because the base layer will absorbe a lot of this. When using this method the joint will be much stronger.

1. Studs in position


2. Angle from aboove. Beads around the studs to the left.

4. Ready repair

3. Weld deposit over the complete surfaces

Old worn out cast iron

Sometimes you have an object that is really worn out from heat and impurities. Examples can be old stoves or manifolds that is pracaticly un-weldable. Then you can after your joint preparation use an unalloyed electrode or wire and put small nests across the base metal surface. You will then give the base metal additional Iron and make it weldable again.

Then you proceed with the repair steps described earlier and you can still save your object from recycling

FILLER METAL SELECTION CHART

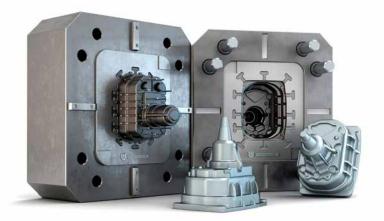
WELDING PROCESS	PURE NICKEL	FERRO-NICKEL	DIMENSIONS	
MMA (SMAW)	61 XE	55 XE, BIMETAL	2,5-3,2mm	
TIG (GTAW)	61 XT	55 XT	1,2-4,0mm	
MIG (GMAW)	MIG (GMAW) 61 XM		0,8-1,6mm	
Cored wire (MCW) -		116 MCW	1,2-1,6mm	

PRODUCT GUIDES

ALLOY TYPES

	ALLOY TYPES ACCORDING TO DIN EN 14700:2005 ALLOY RATIO OF THE PURE WELD METAL DEPOSIT (WT-%)										
SYMBOL	SUITABILITY	C	CR	NI	MN	MO	W	-%) V	NB	OTHER	REST
Fe1	р	<0.4	<3.5	-	0.5-3	<1	<1	-<1	-	-	Fe
Fe2	р	0.4-1.2	<7	<1	0.5-3	<1	<1	<1	-	-	Fe
Fe3	st	0.4-0.5	1-8	<5	<3	<4.5	<10	<1.5	-	Co, Si	Fe
Fe4	st(p)	0.4-1.2	2-6	<4	<3	<10	<19	<4	-	Co, Ti	Fe
Fe5	cpstw	<0.5	<0.1	17-22	<1	3-5	-	-	-	Co, Al	Fe
Fe6	gps	<2.5	<10	-	<3	<3	-	-	<10	Ti	Fe
Fe7	cpt	<0.2	4-30	<6	<3	<2	-	<1	<1	Si	Fe
Fe8	gpt	0.2-2	5-18	-	0.3-3	<4.5	<2	<2	<10	Si, Ti	Fe
Fe9	k(n)p	0.3-1.2	<19	<3	11-18	<2	-	<1	-	Ti	Fe
Fe10	ck(n)pz	<0.25	17-22	7-11	3-8	<1.5	-	-	<1.5	Si	Fe
Fe11	cnz	<0.3	18-31	8-20	<3	<4	-	-	<1.5	Cu	Fe
Fe12	c(n)z	<0.08	17-26	17-26	0.5-3	<4	-	-	<1.5	-	Fe
Fe13	g	<1.5	<6.5	<4	0.5-3	<4	-	-	-	B, Ti	Fe
Fe14	g(c)	1.5-4.5	25-40	<4	0.5-3	<4	-	-	-	-	Fe
Fe15	g	4.5-5.5	20-40	<4	0.5-3	<2	-	-	<10	В	Fe
Fe16	gz	4.5-7.5	10-40	-	<3	<9	<8	<10	<10	B, Co	Fe
Fe20	cgtz	WC	-	-	-	-	-	-	-	-	Fe
Ni1	cpt	<1	15-30	rest	0.3-1	<6	<2	<1	-	Si, Fe, B	Ni
Ni2	ckptz	<0.1	15-30	rest	<1.5	<28	<8	<1	<4	Co, Si, Ti	Ni
Ni3	cpt	<0.1	1-15	rest	0.3-1	<6	-	<1	-	Si, Fe, B	Ni
Ni4	ckptz	<0.1	1-15	rest	<1.5	<28	<15	<1	<4	Co, Si, Ti	Ni
Ni20	cgtz	WC	-	-	-	-	-	-	-	-	Ni
Co1	cktz	<0.6	20-35	<10	0.1-2	<10	<15	-	<1	Fe	Co
Co2	tz(cs)	0.6-3	20-35	<4	0.1-2	-	4-10	-	-	Fe	Co
Co3	tz(cs)	1-3	20-35	<4	<2	<10	6-14	-	-	Fe	Co
Cu1	c(n)	-	-	<6	<15	-	-	-	-	Al, Fe, Sn	Cu
Al1	cn	-	-	10-35	<0.5	<1	-	-	-	Cu, Si	Al
Cr	gn	1-5	rest	-	<1	-	-	15-30	-	Fe, B, Si, Zr	Cr
c: stainless g: abrasion	resistant	k: work l n: non-ma	nardenable agnetic		p: impact resis : edge retentic		t: heat re z: scale re		w: pre	cipitation hard	ened

WC = Fused Tungsten carbide crushed or spherical Alloys which are not included in this table are analogies signified, but the letter Z shall be put in front


ALLOY TYPES - APPLICATIONS

STRUCTURE	WEAR	APPLICATION	ALLOY GROUPS	
Solid body - solid body	Sliding wear	Guide way, slide bar	Fe1, Fe2, Fe3, Cu1	
Solid body - friction	Impigent wear	Sledge hammer	Fe9, Fe10, Al1, Ni2, Ni4	
Dry friction Mixed friction	impact wear	Rocker level, cams	Fe1, Fe2, Fe3	
	Rolling wear	tram rail	Fe1, Fe2, Fe3, Cu1	
\checkmark	Ball bearing wear	Rotors	Fe9, Fe10	
		Casting guidance roller	Fe7	
	Rolling impact wear	Roller conveyor roll	Fe3, Fe6, Fe7, Fe8	
	Thermal shock	Driver untis roll	Fe3	
/		Blacksmiths swage	Fe3, Fe4, Fe6, Fe8, Co1-3, Ni2, Ni4	
\sim	Impact sliding wear, Cold	Shear blade, cutting edge	Fe4, Fe5, Fe8, Co1-3	
14		Hot shear blade	Fe3, Fe4, Co2, Ni2, Ni4	
	Impact sliding wear, Hot	Hole bar	Fe3, Fe4, Co2, Ni2, Ni4	
Solid body - solid body with particles		Milling jaw, milling hammer	Fe6, Fe8, Fe9, Fe14	
		Bash bar	Fe6, Fe8, Fe9	
		Spike breaker	Fe6, Fe8, Fe9, Fe13-15	
	Impact sliding wear	Bandage for cement milling breaker	Fe13-15	
		Coal-, ore- ring	Fe8, Fe13-15	
		Grid bar, grid beam	Fe13-15	
		Plough share, bucket knife	Fe4, Fe5, Fe8, Co1-3	
Solid body - particles	Impact sliding wear	Dropping table, chute	Fe 14-15, Ni20	
high surface pressure and impact		Wear plate	Fe14, Fe15, Fe20, Ni20	
Solid body - solid body		Extruder	Fe14-15, Fe20, Ni1, Ni3, Ni20, Co1-3	
and particles high surface pressure		Decanter	Fe14-15, Fe20, Ni1, Ni3, Ni20, Co2, Cr1	
		Bucket knife	Fe15, Fe20, Ni20	
¥	Grooving wear	Pickup	Fe2, Fe6, Fe8	
		Mixer parts	Fe6, Fe8, Fe14, Fe20, Ni1, Ni3, Ni20	
1842118421		Brick pressing form	Fe6, Fe8, Fe14, Ni1, Ni3	
		Milling segment, milling ring	Fe14	
		Blast furnace-, converter gas valve	Fe6, Fe7, Fe8	
Solid body - particles and gas		Blast furnace top	Fe6, Fe3, Fe8, (Fe16)	
× 8.53 12 8 5.41		Blast furnace feeding hopper	Fe15, Fe16	
2 8	Particle based sliding wear (T>500°C)	Spike breaker, grate bar	Fe7, Co1, Co2	
		Fan rotor, reinforced bar	Fe10, Fe15-16, Fe20, Ni1-4, Ni20	
		Fan wheel, wear plate	Fe14-15, Fe20, Ni1, Ni3, Ni20	
		Steel tube, wear plate	Fe14, Fe15	
Solid - fluid and particles		Sea shovel excavator guides	Fe6, Fe8	
	Elutriation wear, fluid erosion	Fluid pump	Fe6, Fe7, Fe8, Ni1, Ni3	
		Mixer parts	Fe6, Fe7, Fe8	
		Marine propeller	Cu1	
	Erosion corrosion	Water turbine	Fe7, Cu1	
		Chemical valve	Fe7, Fe11, Fe12	
Solid - Fluid	Corrosion	Gadget valve seats	Fe7, Co1-3	

PRODUCT GUIDES

UDDEHOLM TOOL STEEL SELECTION GUIDE

STEELS						
	NORM	W.N	AISI	HARDFACING TIG	HARDFACING MMA	JOINING
HOT WORK TOOL STEELS						
Uddeholm Alvar 14				RC1	7100 E	312, 82
Uddeholm Caldie				600, RC3, M7	7110 E	312, 82
Uddeholm Dievar				RC2	7140 E	312, 82
Uddeholm Formvar				RC2	7140 E	312, 82
Uddeholm Impax extreme	P20 mod	1.2738		P20	7100 E	312, 82
Uddeholm Orvar 2 M	SS 2242	1.2344	H13	H13	7140 E	312, 82
Uddeholm Orvar superior	SS 2242	1.2344	H13	H13	7140 E	312, 82
Uddeholm Orvar supreme	SS 2242	1.2344	H13	H13	7140 E	312, 82
Uddeholm QRO 90 HT	SS 2242	1.2344	H13	H13	7140 E	312, 82
Uddeholm QRO 90 Supreme	SS 2242	1.2344	H13	H13	7140 E	312, 82
Uddeholm Unimax				600, RC3, M7	7110 E	312, 82
Uddeholm Vidar 1		1.2340	H11	RC2, H13	7140 E	312, 82
Uddeholm Vidar Superior		1.2340	H11	RC2, H13	7140 E	312, 82
COLD WORK TOOL STEELS						
Arne	SS 2640	1.2510		600, RC3, M7	7110 E	312, 82
Caldie				600, RC3, M7	7110 E	312, 82
Calmax		1.2358		600, RC3	7110 E	312, 82
Rigor	SS 2260	1.2363		600, RC3, M7	7110 E	312, 82
Sleipner				M7, RC9	7150 E	82
Sverker 3	SS 2312	1.2436		M7, RC9	7150 E	82
Sverker 21	SS 2310	1.2379		M7, RC9	7150 E	82
Unimax				600, RC3	7110 E	
Viking		1.2631		600, RC3, M7	7110 E	312, 82
Carmo				600, RC3	7110 E	312, 82

SHIELDING GASES ACC. DIN EN ISO 14175

DESIGNATION		COMPONENTS IN V	COMPONENTS IN VOL.(%)						
MAIN GROUP	SUB GROUP	OXID	IZING	IN	ERT	REDUCING	INERT		
		CO ₂	O ₂	Ar	He	H ₂	N ₂		
I	1			100					
	23				100				
	5			Balance ²	0,5 ≤ He ≤ 95				
M1	1	0,5 ≤ CO2 ≤ 5		Balance ²		0,5 ≤ H2 ≤ 5			
	2	0,5 ≤ CO2 ≤ 5		Balance ²					
	3	0.5 < 602 < 5	0,5 ≤ O2 ≤ 3 0,5 ≤ O2 ≤ 3	Balance ² Balance ²					
		0,5 ≤ CO2 ≤ 5	0,5 ≤ 02 ≤ 3						
M2	0	5 < CO2 ≤ 15		Balance ² Balance ²					
	1	15 < CO2 ≤ 25	3 < O2 ≤ 10	Balance ²					
	2	0,5 ≤ CO2 ≤ 5	$3 < 0.2 \le 10$ $3 < 0.2 \le 10$	Balance ²					
	4	5 < CO2 ≤ 15	0,5 ≤ 02 ≤ 3	Balance ²					
	5	5 < CO2 ≤ 15	3 < O2 ≤ 10	Balance ²					
	6	15 < CO2 ≤ 25	0,5 ≤ O2 ≤ 3	Balance ²					
	7	15 < CO2 ≤ 25	3 < O2 ≤ 10	Balance ²					
M3	1	25 < CO2 ≤ 50		Balance ²					
	2		10 < O2 ≤ 15	Balance ²					
	3	25 < CO2 ≤ 50	2 < O2 ≤ 10	Balance ²					
	4	5 < CO2 ≤ 25	10 < O2 ≤ 15	Balance ²					
	5	25 < CO2 ≤ 50	10 < O2 ≤ 15	Balance ²					
С	1	100							
	2	Balance	0,5 ≤ O2 ≤ 30						
R	1			Balance ²		0,5 ≤ H2 ≤ 5			
	2			Balance ²		15 < H2 ≤ 50			
Ν	1						100		
	2			Balance ²			0,5 ≤ N2 ≤ 5		
	3			Balance ²			5 < N2 ≤ 50		
	4			Balance ²		0,5 ≤ H2 ≤ 10	0,5 ≤ N2 ≤ 5		
	5					0,5 ≤ H2 ≤ 50	Balance		
0	1		100						
Z	Gas mixtures wit	h components not listed	d in the table or gas n	nixtures with a of the	specified range. ³				
"2 You may cha	ange Ar to He compl	etely or partially							
3 Two equally	gas mixtures i Z mus	t not be replaced again	st each other"						

GAS SELECTION GUIDE

WELDING PROCESS	ALLOY	FIRST CHOICE	EXAMPLES BRAND NAMES	OPTIONS
TIG	All types	11	MISON Ar, ARCAL PRIME	I3, R1, N2
MIG/MAG	Fe-base solid wires	M21	MISON 18, ARCAL FORCE	M20, C1
	Stainless & Nickel solid wires	M12	MISON 2, ARCAL CHROME	13
	Stainless & Nickel FCW	M21	MISON 18, ARCAL FORCE	M20, C1
	Fe-based impact resistant FCW	M21	MISON 18, ARCAL FORCE	M20
	Fe-based impact resistant MCW	M12	MISON 18, ARCAL FORCE	M21
	Chromium carbide wires	M21	MISON 18, ARCAL FORCE	M20
	Tool steel core wires	M12	MISON 2, ARCAL CHROME	M21
	Cast Iron wires	M12	MISON 2, ARCAL CHROME	M21
	Tungsten carbide FCW	M21	MISON 18, ARCAL FORCE	M20
	Copper alloys	11	MISON Ar, ARCAL PRIME	13
	Cobalt MCW	11	MISON Ar, ARCAL PRIME	13

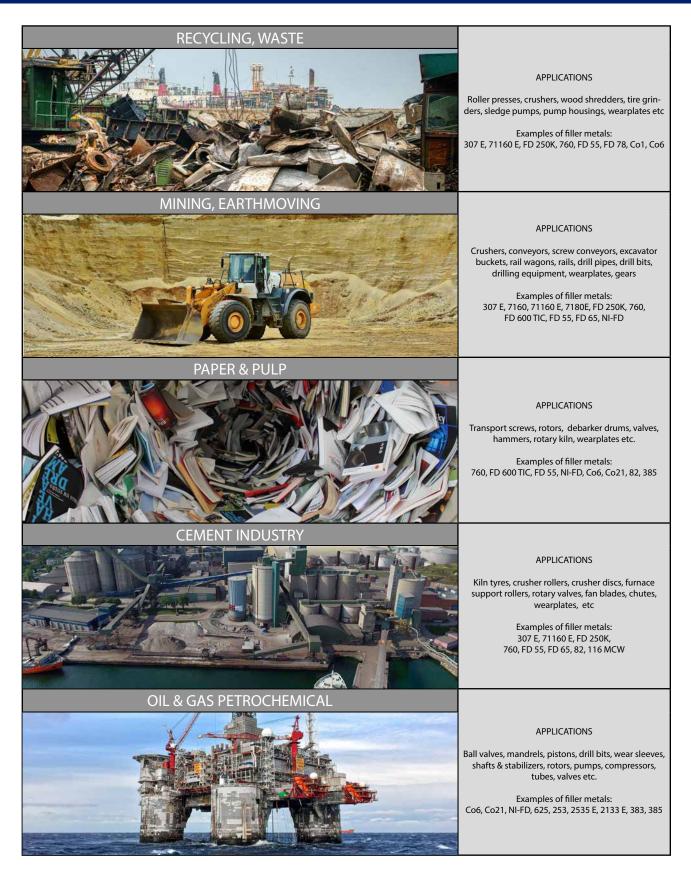
PRODUCT GUIDES

HARDNESS CONVERSION TABLE

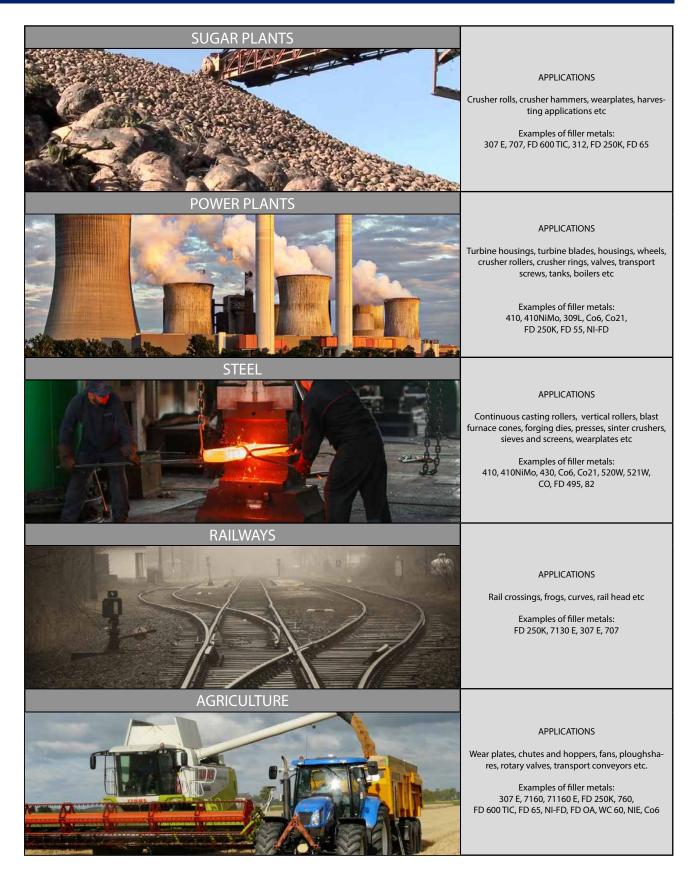
HRC	HV (Vickers)	HB (Brinell)	Tensile strenght (MPa)	HRC	HV (Vickers)	HB (Brinell)	Tensile strenght (MPa)
68	940	-	-	24	260	247	835
67	900	-	-	23	254	243	820
66	865	-	-	22	248	237	800
65	832	-	-	21	243	231	780
64	800	-	-	20	238	226	-
63	772	-	-	-	222	222	-
62	746	-	-	-	216	216	-
61	720	-	-	-	210	210	-
60	697	-	-	-	205	205	-
59	674	-	-	-	200	200	-
58	653	-	2200	-	195	195	-
57	533	-	2140	-	190	190	-
56	613	-	2050	-	185	185	-
55	595	-	1980	-	180	180	-
54	577	-	1910	-	176	176	-
53	560	-	1845	-	172	172	-
52	544	500	1790	-	169	169	-
51	528	487	1730	-	165	165	-
50	513	475	1680	-	162	162	-
49	498	464	1620	-	159	159	-
48	484	451	1570	-	156	156	-
47	471	442	1530	-	153	153	-
46	458	432	1480	-	150	150	-
45	446	421	1430	-	147	147	-
44	434	409	1400	-	144	144	-
43	423	400	1360	-	141	141	-
42	412	390	1330	-	139	139	-
41	402	381	1300	-	137	137	-
40	392	371	1260	-	135	135	-
39	382	362	1230	-	132	132	-
38	272	353	1200	-	130	130	-
37	363	344	1170	-	127	127	-
36	354	336	1140	-	125	125	-
35	345	327	1110	-	123	123	-
34	336	319	1080	-	121	121	-
33	327	311	1050	-	119	119	-
32	318	301	1020	-	117	117	-
31	310	294	995	-	116	116	-
30	302	286	970	-	114	114	-
29	294	279	940	-	112	112	-
28	286	271	920	-	110	110	-
27	279	264	900	-	108	108	-
26	272	258	870	-	107	107	-
25	266	253	860	-	-	-	-

CONVERSION TABLE INCH TO MM

1 lnch = 25,4mm						
Ømm	Ø (inch)	Ø (inch)				
0.6	1/44	0.0236				
0.8	1/32	0.0315				
1.0	1/ 26	0.0393				
1.2	3/64	0.0472				
1.6	1/16	0.0629				
2.0	5/64	0.0781				
2.4	3/32	0.0945				
3.2	1/8	0.1259				
4.0	5/32	0.1574				


DENSITY

METALS	CHEMICAL ELEMENTS	
Ag	Silver	
AI	Aluminium	
Au	Gold	
Ві	Bismuth	
Cd	Cadmium	
Со	Cobalt	
Cr	Chromium	
Cu	Copper	
Fe	Iron	
Hf	Hafnium	
In	Indium	
Mg	Magnesium	
Mn	Manganese	
Мо	Molybdenum	
Ni	Nickel	
Nb	Niobium	
Р	Phosphorus	
Pd	Palladium	
Sb	Antimony	
Si	Silicium	
Sn	Tin	
Ti	Titanium	
Та	Tantalum	
V	Vanadium	
W	Wolfram	
WC	Wolfram carbide	
Zn	Zink	
Zr	Zirkonium	


MESH-MICRON CONVERSION TABLE

MICRON MESH UK MESH USA (ASTM) MESH USA (TYLER) 8000 n/a 5/16 in 2,5 6700 1 0,265 in 3 5600 3 3,5 3,5 4750 3,5 n/a 4 4000 4 5 5 3350 5 6 6 2800 6 7 7 2360 7 8 8 2000 8 10 9 1700 10 12 10 1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 <th colspan="5"></th>					
6700 1 0,265 in 3 5600 3 3,5 3,5 4750 3,5 n/a 4 4000 4 5 5 3350 5 6 6 2800 6 7 7 2360 7 8 8 2000 8 10 9 1700 10 12 10 1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 <t< th=""><th>MICRON</th><th>MESH UK</th><th></th><th></th></t<>	MICRON	MESH UK			
5600 3 3,5 3,5 4750 3,5 n/a 4 4000 4 5 5 3350 5 6 6 2800 6 7 7 2360 7 8 8 2000 8 10 9 1700 10 12 10 1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 3355 44 45 42 300 52 50 48 250 60 60 60 180 85 80 80 150 10	8000	n/a	5/16 in	2,5	
4750 3,5 n/a 4 4000 4 5 5 3350 5 6 6 2800 6 7 7 2360 7 8 8 2000 8 10 9 1700 10 12 10 1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 </td <td>6700</td> <td>1</td> <td>0,265 in</td> <td>3</td>	6700	1	0,265 in	3	
4000 4 5 5 3350 5 6 6 2800 6 7 7 2360 7 8 8 2000 8 10 9 1700 10 12 10 1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 3355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120	5600	3	3,5	3,5	
3350 5 6 6 2800 6 7 7 2360 7 8 8 2000 8 10 9 1700 10 12 10 1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 <td< td=""><td>4750</td><td>3,5</td><td>n/a</td><td>4</td></td<>	4750	3,5	n/a	4	
2800 6 7 7 2360 7 8 8 2000 8 10 9 1700 10 12 10 1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90	4000	4	5	5	
2360 7 8 8 2000 8 10 9 1700 10 12 10 1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75	3350	5	6	6	
2000 8 10 9 1700 10 12 10 1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 270 75 200 200 200 63	2800	6	7	7	
1700 10 12 10 1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 </td <td>2360</td> <td>7</td> <td>8</td> <td>8</td>	2360	7	8	8	
1400 12 14 12 1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45<	2000	8	10	9	
1180 14 16 14 1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38	1700	10	12	10	
1000 16 18 16 850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 3	1400	12	14	12	
850 18 20 20 710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	1180	14	16	14	
710 22 25 24 600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	1000	16	18	16	
600 25 30 28 500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	850	18	20	20	
500 30 35 32 425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	710	22	25	24	
425 36 40 35 355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	600	25	30	28	
355 44 45 42 300 52 50 48 250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	500	30	35	32	
300 52 50 48 250 60 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	425	36	40	35	
250 60 60 60 212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	355	44	45	42	
212 72 70 65 180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	300	52	50	48	
180 85 80 80 150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	250	60	60	60	
150 100 100 100 125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	212	72	70	65	
125 120 120 115 106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	180	85	80	80	
106 150 140 150 90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	150	100	100	100	
90 170 170 170 75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	125	120	120	115	
75 200 200 200 63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	106	150	140	150	
63 240 230 250 53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	90	170	170	170	
53 300 270 270 45 350 325 325 38 400 400 400 32 440 450 n/a	75	200	200	200	
45 350 325 325 38 400 400 400 32 440 450 n/a	63	240	230	250	
38 400 400 400 32 440 450 n/a	53	300	270	270	
32 440 450 n/a	45	350	325	325	
	38	400	400	400	
	32	440	450	n/a	
25 n/a 500 500	25	n/a	500	500	
0 n/a 635 n/a	0	n/a	635	n/a	

APPLICATIONS

Meltelit

For brazing and welding consumables see our other catalogues or visit www.meltolit.se

J A Gahms gata 4, S-421 31 Västra Frölunda Tel. +46 (0)31- 748 52 25 Fax +46 (0)31- 28 64 65 info@meltolit.se www.meltolit.se RAZIN WELDING CONSUMABLES